Drew L Siler (Former Employee)
Science and Products
USGS Contributions to the Nevada Geothermal Machine Learning Project (DE-FOA-0001956): Geophysics, Heat Flow, Slip and Dilation Tendency USGS Contributions to the Nevada Geothermal Machine Learning Project (DE-FOA-0001956): Geophysics, Heat Flow, Slip and Dilation Tendency
This package contains USGS data contributions to the DOE-funded Nevada Geothermal Machine Learning Project (DE-FOA-0001956), with the objective of developing a machine learning approach to identifying new geothermal systems in the Great Basin. This package contains three major data products (geophysics, heat flow, and fault dilation and slip tendencies) that cover a large portion of...
Snake River Plain Play Fairway Analysis Phase 2 Favorability Model (DE EE0006733) Snake River Plain Play Fairway Analysis Phase 2 Favorability Model (DE EE0006733)
This data release contains all digital geographic data used and produced by the Snake River Plain Play Fairway Analysis (DE EE0006733) for Phase 2 (ArcGIS shapefiles and raster files) as well as the model processing script, tables, and documentation used to generate data outputs. Phase 2 examines two subset areas of the Phase 1 study area, Mountain Home and Camas Prairie. Brief...
Snake River Plain Play Fairway Analysis Phase 1 Favorability Model (DE EE0006733) Snake River Plain Play Fairway Analysis Phase 1 Favorability Model (DE EE0006733)
This data release contains all digital geographic data used and produced by the Snake River Plain Play Fairway Analysis (DE EE0006733) for Phase 1 (ArcGIS shapefiles and raster files) as well as the model processing script, tables, and documentation used to generate data outputs. Brief descriptions of data layers are in the metadata of GIS files, greater detail is available in the Larger...
GIS and Data Tables for Focus Areas for Potential Domestic Nonfuel Sources of Rare Earth Elements GIS and Data Tables for Focus Areas for Potential Domestic Nonfuel Sources of Rare Earth Elements
In response to Executive Order 13817 of December 20, 2017, the U.S. Geological Survey (USGS) coordinated with the Bureau of Land Management (BLM) to identify 35 nonfuel minerals or mineral materials considered critical to the economic and national security of the United States (U.S.). Acquiring information on possible domestic sources of these critical minerals is the basis of the USGS...
Filter Total Items: 32
Advancing geophysical techniques to image a stratigraphic hydrothermal resource Advancing geophysical techniques to image a stratigraphic hydrothermal resource
Sedimentary-hosted geothermal energy systems are permeable structural, structural-stratigraphic, and/or stratigraphic horizons with sufficient temperature for direct use and/or electricity generation. Sedimentary-hosted (i.e., stratigraphic) geothermal reservoirs may be present in multiple locations across the central and eastern Great Basin of the USA, thereby constituting a potentially...
Authors
Paul Schwering, Carmen Winn, Piyoosh Jaysaval, Hunter Knox, Drew L. Siler, Christian Hardwick, Bridget Ayling, James Faulds, Elijah Mlawsky, Emma McConville, Jack Norbeck, Nicholas Hinz, Gabe Matson, John Queen
Modeling subsurface performance of a geothermal reservoir using machine learning Modeling subsurface performance of a geothermal reservoir using machine learning
Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells—increasing or decreasing the fluid flow rates across the wells—and drilling new wells at appropriate locations. The latter is expensive, time-consuming, and subject to many engineering constraints, but the former is a...
Authors
Dmitry Duplyakin, Koenraad F Beckers, Drew L. Siler, Michael J. Martin, Henry E. Johnston
Bottom-up and top-down control on hydrothermal resources in the Great Basin: An example from Gabbs Valley, Nevada Bottom-up and top-down control on hydrothermal resources in the Great Basin: An example from Gabbs Valley, Nevada
The Great Basin in the western United States hosts various hydrothermal systems, including both active geothermal systems and ancient systems preserved as mineral deposits. New magnetotelluric and structural geologic data were collected in the Gabbs Valley area of western Nevada to demonstrate the advantage of imaging the full crustal column below known hydrothermal systems. Three...
Authors
Jared R. Peacock, Drew L. Siler
Machine learning to identify geologic factors associated with production in geothermal fields: A case-study using 3D geologic data, Brady geothermal field, Nevada Machine learning to identify geologic factors associated with production in geothermal fields: A case-study using 3D geologic data, Brady geothermal field, Nevada
In this paper, we present an analysis using unsupervised machine learning (ML) to identify the key geologic factors that contribute to the geothermal production in Brady geothermal field. Brady is a hydrothermal system in northwestern Nevada that supports both electricity production and direct use of hydrothermal fluids. Transmissive fluid-flow pathways are relatively rare in the...
Authors
Drew L. Siler, Jeff D. Pepin, Velimir V. Vesselinov, Maruti K. Mudunuru, Bulbul Ahmmed
Stochastic inversion of gravity, magnetic, tracer, lithology, and fault data for geologically realistic structural models: Patua Geothermal Field case study Stochastic inversion of gravity, magnetic, tracer, lithology, and fault data for geologically realistic structural models: Patua Geothermal Field case study
Financial risk due to geological uncertainty is a major barrier for geothermal development. Production from a geothermal well depends on the unknown location of subsurface geological structures, such as faults that contain hydrothermal fluids. Traditionally, geoscientists collect many different datasets, interpret the datasets manually, and create a single model estimating faults'...
Authors
Ahinoam Pollack, Trenton T. Cladouhos, Michael W. Swyer, Drew L. Siler, Tapan Mukerji, Roland N. Horne
3-D geologic controls of hydrothermal fluid flow at Brady geothermal field, Nevada, USA 3-D geologic controls of hydrothermal fluid flow at Brady geothermal field, Nevada, USA
In many hydrothermal systems, fracture permeability along faults provides pathways for groundwater to transport heat from depth. Faulting generates a range of deformation styles that cross-cut heterogeneous geology, resulting in complex patterns of permeability, porosity, and hydraulic conductivity. Vertical connectivity (a throughgoing network of permeable areas that allows advection of...
Authors
Drew L. Siler, Jeff D. Pepin
Non-USGS Publications**
Siler, D.L., and Karson, J.A., 2017. Along-Axis Structure and Crustal Construction Processes of Spreading Segments in Iceland: Implications for Magamatic Rifts. Tectonics.
Siler, D.L., Yingqi Zhang, Nicolas F. Spycher, Patrick F. Dobson, James S. McClain, Erika Gasperikova Robert A. Zierenberg, Peter Schiffman, Colin Ferguson, Andrew Fowler, Carolyn Cantwell, 2017. Play-fairway analysis for geothermal resources and exploration risk in the Modoc Plateau region, Geothermics. 69, 15-33.
Siler, D.L., and Kennedy, B.M., 2016. Regional crustal-scale structures as conduits for deep geothermal upflow, Geothermics, 59A, 27-37.
Witter, J.B., Siler, D.L., Faulds, J.E., and Hinz, N.H. 3D geophysical inversion modeling of gravity data to test the 3D geologic model of the Bradys geothermal area, Nevada, USA.
Witter, J.B., Siler, D.L., Faulds, J.E., and Hinz, N.H. 3D geophysical inversion modeling of gravity data to test the 3D geologic model of the Bradys geothermal area, Nevada, USA.
Witter, J.B., Siler, D.L., Faulds, J.E., and Hinz, N.H. 3D geophysical inversion modeling of gravity data to test the 3D geologic model of the Bradys geothermal area, Nevada, USA.
Siler, D.L., Faulds, J.E. Mayhew, B., and McNamara, D., 2016. Analysis of the favorability for geothermal fluid flow in 3D: Astor Pass geothermal prospect, Great Basin, northwestern Nevada, USA, Geothermics, 60, 1-12.
Siler, D.L., and J.A. Karson, 2012. Sub-volcanic subsidence and caldera formation during sub aerial seafloor spreading in Iceland, Geological Society of America Bulletin, v. 124, no. 7-8, p. 1310-1323.
Siler, D.L., and J.A. Karson, 2009. Three-dimensional structure of inclined sheet swarms: Implications for crustal thickening and subsidence in the volcanic rift zones of Iceland, Journal of Volcanology and Geothermal Research, 188, 333–346
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
Science and Products
USGS Contributions to the Nevada Geothermal Machine Learning Project (DE-FOA-0001956): Geophysics, Heat Flow, Slip and Dilation Tendency USGS Contributions to the Nevada Geothermal Machine Learning Project (DE-FOA-0001956): Geophysics, Heat Flow, Slip and Dilation Tendency
This package contains USGS data contributions to the DOE-funded Nevada Geothermal Machine Learning Project (DE-FOA-0001956), with the objective of developing a machine learning approach to identifying new geothermal systems in the Great Basin. This package contains three major data products (geophysics, heat flow, and fault dilation and slip tendencies) that cover a large portion of...
Snake River Plain Play Fairway Analysis Phase 2 Favorability Model (DE EE0006733) Snake River Plain Play Fairway Analysis Phase 2 Favorability Model (DE EE0006733)
This data release contains all digital geographic data used and produced by the Snake River Plain Play Fairway Analysis (DE EE0006733) for Phase 2 (ArcGIS shapefiles and raster files) as well as the model processing script, tables, and documentation used to generate data outputs. Phase 2 examines two subset areas of the Phase 1 study area, Mountain Home and Camas Prairie. Brief...
Snake River Plain Play Fairway Analysis Phase 1 Favorability Model (DE EE0006733) Snake River Plain Play Fairway Analysis Phase 1 Favorability Model (DE EE0006733)
This data release contains all digital geographic data used and produced by the Snake River Plain Play Fairway Analysis (DE EE0006733) for Phase 1 (ArcGIS shapefiles and raster files) as well as the model processing script, tables, and documentation used to generate data outputs. Brief descriptions of data layers are in the metadata of GIS files, greater detail is available in the Larger...
GIS and Data Tables for Focus Areas for Potential Domestic Nonfuel Sources of Rare Earth Elements GIS and Data Tables for Focus Areas for Potential Domestic Nonfuel Sources of Rare Earth Elements
In response to Executive Order 13817 of December 20, 2017, the U.S. Geological Survey (USGS) coordinated with the Bureau of Land Management (BLM) to identify 35 nonfuel minerals or mineral materials considered critical to the economic and national security of the United States (U.S.). Acquiring information on possible domestic sources of these critical minerals is the basis of the USGS...
Filter Total Items: 32
Advancing geophysical techniques to image a stratigraphic hydrothermal resource Advancing geophysical techniques to image a stratigraphic hydrothermal resource
Sedimentary-hosted geothermal energy systems are permeable structural, structural-stratigraphic, and/or stratigraphic horizons with sufficient temperature for direct use and/or electricity generation. Sedimentary-hosted (i.e., stratigraphic) geothermal reservoirs may be present in multiple locations across the central and eastern Great Basin of the USA, thereby constituting a potentially...
Authors
Paul Schwering, Carmen Winn, Piyoosh Jaysaval, Hunter Knox, Drew L. Siler, Christian Hardwick, Bridget Ayling, James Faulds, Elijah Mlawsky, Emma McConville, Jack Norbeck, Nicholas Hinz, Gabe Matson, John Queen
Modeling subsurface performance of a geothermal reservoir using machine learning Modeling subsurface performance of a geothermal reservoir using machine learning
Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells—increasing or decreasing the fluid flow rates across the wells—and drilling new wells at appropriate locations. The latter is expensive, time-consuming, and subject to many engineering constraints, but the former is a...
Authors
Dmitry Duplyakin, Koenraad F Beckers, Drew L. Siler, Michael J. Martin, Henry E. Johnston
Bottom-up and top-down control on hydrothermal resources in the Great Basin: An example from Gabbs Valley, Nevada Bottom-up and top-down control on hydrothermal resources in the Great Basin: An example from Gabbs Valley, Nevada
The Great Basin in the western United States hosts various hydrothermal systems, including both active geothermal systems and ancient systems preserved as mineral deposits. New magnetotelluric and structural geologic data were collected in the Gabbs Valley area of western Nevada to demonstrate the advantage of imaging the full crustal column below known hydrothermal systems. Three...
Authors
Jared R. Peacock, Drew L. Siler
Machine learning to identify geologic factors associated with production in geothermal fields: A case-study using 3D geologic data, Brady geothermal field, Nevada Machine learning to identify geologic factors associated with production in geothermal fields: A case-study using 3D geologic data, Brady geothermal field, Nevada
In this paper, we present an analysis using unsupervised machine learning (ML) to identify the key geologic factors that contribute to the geothermal production in Brady geothermal field. Brady is a hydrothermal system in northwestern Nevada that supports both electricity production and direct use of hydrothermal fluids. Transmissive fluid-flow pathways are relatively rare in the...
Authors
Drew L. Siler, Jeff D. Pepin, Velimir V. Vesselinov, Maruti K. Mudunuru, Bulbul Ahmmed
Stochastic inversion of gravity, magnetic, tracer, lithology, and fault data for geologically realistic structural models: Patua Geothermal Field case study Stochastic inversion of gravity, magnetic, tracer, lithology, and fault data for geologically realistic structural models: Patua Geothermal Field case study
Financial risk due to geological uncertainty is a major barrier for geothermal development. Production from a geothermal well depends on the unknown location of subsurface geological structures, such as faults that contain hydrothermal fluids. Traditionally, geoscientists collect many different datasets, interpret the datasets manually, and create a single model estimating faults'...
Authors
Ahinoam Pollack, Trenton T. Cladouhos, Michael W. Swyer, Drew L. Siler, Tapan Mukerji, Roland N. Horne
3-D geologic controls of hydrothermal fluid flow at Brady geothermal field, Nevada, USA 3-D geologic controls of hydrothermal fluid flow at Brady geothermal field, Nevada, USA
In many hydrothermal systems, fracture permeability along faults provides pathways for groundwater to transport heat from depth. Faulting generates a range of deformation styles that cross-cut heterogeneous geology, resulting in complex patterns of permeability, porosity, and hydraulic conductivity. Vertical connectivity (a throughgoing network of permeable areas that allows advection of...
Authors
Drew L. Siler, Jeff D. Pepin
Non-USGS Publications**
Siler, D.L., and Karson, J.A., 2017. Along-Axis Structure and Crustal Construction Processes of Spreading Segments in Iceland: Implications for Magamatic Rifts. Tectonics.
Siler, D.L., Yingqi Zhang, Nicolas F. Spycher, Patrick F. Dobson, James S. McClain, Erika Gasperikova Robert A. Zierenberg, Peter Schiffman, Colin Ferguson, Andrew Fowler, Carolyn Cantwell, 2017. Play-fairway analysis for geothermal resources and exploration risk in the Modoc Plateau region, Geothermics. 69, 15-33.
Siler, D.L., and Kennedy, B.M., 2016. Regional crustal-scale structures as conduits for deep geothermal upflow, Geothermics, 59A, 27-37.
Witter, J.B., Siler, D.L., Faulds, J.E., and Hinz, N.H. 3D geophysical inversion modeling of gravity data to test the 3D geologic model of the Bradys geothermal area, Nevada, USA.
Witter, J.B., Siler, D.L., Faulds, J.E., and Hinz, N.H. 3D geophysical inversion modeling of gravity data to test the 3D geologic model of the Bradys geothermal area, Nevada, USA.
Witter, J.B., Siler, D.L., Faulds, J.E., and Hinz, N.H. 3D geophysical inversion modeling of gravity data to test the 3D geologic model of the Bradys geothermal area, Nevada, USA.
Siler, D.L., Faulds, J.E. Mayhew, B., and McNamara, D., 2016. Analysis of the favorability for geothermal fluid flow in 3D: Astor Pass geothermal prospect, Great Basin, northwestern Nevada, USA, Geothermics, 60, 1-12.
Siler, D.L., and J.A. Karson, 2012. Sub-volcanic subsidence and caldera formation during sub aerial seafloor spreading in Iceland, Geological Society of America Bulletin, v. 124, no. 7-8, p. 1310-1323.
Siler, D.L., and J.A. Karson, 2009. Three-dimensional structure of inclined sheet swarms: Implications for crustal thickening and subsidence in the volcanic rift zones of Iceland, Journal of Volcanology and Geothermal Research, 188, 333–346
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
*Disclaimer: Listing outside positions with professional scientific organizations on this Staff Profile are for informational purposes only and do not constitute an endorsement of those professional scientific organizations or their activities by the USGS, Department of the Interior, or U.S. Government