Lucy Bartlett is a Biologist at the St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida.
Science and Products
Coral Reef Ecosystem Studies (CREST)
The specific objectives of this project are to identify and describe the processes that are important in determining rates of coral-reef construction. How quickly the skeletons of calcifying organisms accumulate to form massive barrier-reef structure is determined by processes of both construction (how fast organisms grow and reproduce) and destruction (how fast reefs break down by mechanical...
Measuring Coral Growth to Help Restore Reefs
It is critical to start measuring calcification rates in a systematic way now, particularly at subtropical latitudes where conditions fluctuate seasonally, so that we can understand how dynamic ocean conditions affect calcifying organisms today and predict possible changes in the future. We established a calcification monitoring network in the Florida Keys and have been measuring calcification...
Physiological differences in bleaching response of the coral Porites astreoides along the Florida Keys reef tract during high-temperature stress
The Florida Keys reef tract (FKRT) has a unique geological history wherein Holocene sea-level rise and bathymetry interacted, resulting in a reef-building system with notable spatial differences in reef development. Overprinted on this geologic history, recent global and local stressors have led to degraded reefs dominated by fleshy algae, soft corals, and sponges. Here, we assessed how coral phys
Reestablishing a stepping-stone population of the threatened elkhorn coral Acropora palmata to aid regional recovery
Recovery of the elkhorn coral Acropora palmata is critical to reversing coral reef ecosystem collapse in the western Atlantic, but the species is severely threatened. To gauge potential for the species’ restoration in Florida, USA, we conducted an assisted migration experiment where 50 coral fragments of 5 nursery-raised genetic strains (genets) from the upper Florida Keys were moved to 5 sites ac
Improving estimates of coral reef construction and erosion with in-situ measurements
The decline in living coral since the 1970s has conspicuously slowed reef construction on a global scale, but the related process of reef erosion is less visible and not often quantified. Here we present new data on the constructional and deconstructional side of the carbonate-budget equation in the Florida Keys, U.S.A. We documented Orbicella spp. calcification rates at four offshore reefs and qu
Science and Products
- Science
Coral Reef Ecosystem Studies (CREST)
The specific objectives of this project are to identify and describe the processes that are important in determining rates of coral-reef construction. How quickly the skeletons of calcifying organisms accumulate to form massive barrier-reef structure is determined by processes of both construction (how fast organisms grow and reproduce) and destruction (how fast reefs break down by mechanical...Measuring Coral Growth to Help Restore Reefs
It is critical to start measuring calcification rates in a systematic way now, particularly at subtropical latitudes where conditions fluctuate seasonally, so that we can understand how dynamic ocean conditions affect calcifying organisms today and predict possible changes in the future. We established a calcification monitoring network in the Florida Keys and have been measuring calcification... - Publications
Physiological differences in bleaching response of the coral Porites astreoides along the Florida Keys reef tract during high-temperature stress
The Florida Keys reef tract (FKRT) has a unique geological history wherein Holocene sea-level rise and bathymetry interacted, resulting in a reef-building system with notable spatial differences in reef development. Overprinted on this geologic history, recent global and local stressors have led to degraded reefs dominated by fleshy algae, soft corals, and sponges. Here, we assessed how coral physReestablishing a stepping-stone population of the threatened elkhorn coral Acropora palmata to aid regional recovery
Recovery of the elkhorn coral Acropora palmata is critical to reversing coral reef ecosystem collapse in the western Atlantic, but the species is severely threatened. To gauge potential for the species’ restoration in Florida, USA, we conducted an assisted migration experiment where 50 coral fragments of 5 nursery-raised genetic strains (genets) from the upper Florida Keys were moved to 5 sites acImproving estimates of coral reef construction and erosion with in-situ measurements
The decline in living coral since the 1970s has conspicuously slowed reef construction on a global scale, but the related process of reef erosion is less visible and not often quantified. Here we present new data on the constructional and deconstructional side of the carbonate-budget equation in the Florida Keys, U.S.A. We documented Orbicella spp. calcification rates at four offshore reefs and qu