Patrick is the Research Director for the Climate Impacts and Coastal Processes Team, which includes overseeing the development and application of the Coastal Storm Modeling System (CoSMoS), coastal monitoring and process-based studies of beaches across California, and research investigating the link between climate variability and coastal hazards across the Pacific Ocean basin.
Dr. Patrick Barnard has been a coastal geologist with the USGS Pacific Coastal and Marine Science Center in Santa Cruz since 2003, and is the Research Director of the Climate Impacts and Coastal Processes Team. His research focuses on storm- and climate-related changes to the beaches and estuaries bordering the Pacific Ocean. His research has been published in over 80 peer-reviewed scientific papers, including Nature, and presented over 100 times at scientific conferences and universities. He serves on numerous regional, national and international scientific review panels related to climate change and coastal hazards. He received a BA from Williams College, MS from University of South Florida, and PhD from UC Riverside.
Science and Products
Linking human impacts within an estuary to ebb-tidal delta evolution
Littoral transport rates in the Santa Barbara Littoral Cell: a process-based model analysis
Carpinteria Coastal Processes Study, 2005-2007: Final report
Influence of Harbor construction on downcoast morphological evolution: Santa Barbara, California
High-resolution topographic, bathymetric, and oceanographic data for the Pleasure Point area, Santa Cruz County, California: 2005-2007
Coastal processes study at Ocean Beach, San Francisco, CA: Summary of data collection 2004-2006
Sand waves at the mouth of San Francisco Bay, California
Morphological evolution in the San Francisco Bight
Monitoring and modeling nearshore dredge disposal for indirect beach nourishment, Ocean Beach, San Francisco
Swash zone characteristics at Ocean Beach, San Francisco, CA
Coupling alongshore variations in wave energy to beach morphologic change using the SWAN wave model at Ocean Beach, San Francisco, CA
A rapid compatibility analysis of potential offshore sand sources for beaches of the Santa Barbara Littoral Cell
Non-USGS Publications**
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
Science and Products
- Science
Filter Total Items: 15
- Data
Filter Total Items: 13No Result Found
- Maps
- Multimedia
- Publications
Filter Total Items: 116
Linking human impacts within an estuary to ebb-tidal delta evolution
San Francisco Bay, California, USA is among the most anthropogenically altered estuaries in the entire United States, but the impact on sediment transport to the coastal ocean has not been quantified. Analysis of four historic bathymetric surveys has revealed large changes to the morphology of the San Francisco Bar, an ebb-tidal delta at the mouth of the San Francisco Bay. From 1873 to 2005 the baLittoral transport rates in the Santa Barbara Littoral Cell: a process-based model analysis
Identification of the sediment transport patterns and pathways is essential for sustainable coastal zone management of the heavily modified coastline of Santa Barbara and Ventura County (California, USA). A process-based model application, based on Delft3D Online Morphology, is used to investigate the littoral transport potential along the Santa Barbara Littoral Cell (between Point Conception andCarpinteria Coastal Processes Study, 2005-2007: Final report
The United States Geological Survey (USGS), in collaboration with the University of California, Santa Cruz (UCSC), conducted a two-year study of the beach and nearshore coastal processes for the City of Carpinteria and adjacent beaches. The work was performed in response to and worked directly with the United States Army Corps of Engineers (USACE) Project Management Plan (PMP) for the City of CarpInfluence of Harbor construction on downcoast morphological evolution: Santa Barbara, California
Sand impoundment caused by construction of the Santa Barbara Harbor in the 1920s, created an erosion wave that impacted downcoast Carpinteria Beach. Historic beach and shoreline changes were analyzed to understand continuing erosion using a combination of historic air photos, lidar, and physical measurements. The long-term analyses show a clockwise rotation with erosion of - 0.35 m/yr at the updriHigh-resolution topographic, bathymetric, and oceanographic data for the Pleasure Point area, Santa Cruz County, California: 2005-2007
The County of Santa Cruz Department of Public Works and the County of Santa Cruz Redevelopment Agency requested the U.S. Geological Survey (USGS) Western Coastal and Marine Geology Team (WCMG) to provide baseline geologic and oceanographic information on the coast and inner shelf at Pleasure Point, Santa Cruz County, California. The rationale for this proposed work is a need to better understand tCoastal processes study at Ocean Beach, San Francisco, CA: Summary of data collection 2004-2006
Ocean Beach in San Francisco, California, contains a persistent erosional section in the shadow of the San Francisco ebb tidal delta and south of Sloat Boulevard that threatens valuable public infrastructure as well as the safe recreational use of the beach. Coastal managers have been discussing potential mediation measures for over a decade, with little scientific research available to aid in decSand waves at the mouth of San Francisco Bay, California
The U.S. Geological Survey; California State University, Monterey Bay; U.S. Army Corps of Engineers; National Oceanic and Atmospheric Administration; and Center for Integrative Coastal Observation, Research and Education partnered to map central San Francisco Bay and its entrance under the Golden Gate Bridge using multibeam echosounders. View eastward, through the Golden Gate into central San FraMorphological evolution in the San Francisco Bight
San Francisco Bight, located near the coast of San Francisco, USA, is an extremely dynamic tidal inlet environmental subject to large waves and strong currents. Wave heights coming from the Pacific Ocean commonly exceed 5 m during winter storms. During peak flow tidal currents approach 3 m/s at the Golden Gate, a 1 km wide entrance that connects San Francisco Bay to the Pacific Ocean. Flow structuMonitoring and modeling nearshore dredge disposal for indirect beach nourishment, Ocean Beach, San Francisco
Nearshore dredge disposal was performed during the summer of 2005 at Ocean Beach, San Francisco, CA, a high energy tidal and wave environment. This trial run was an attempt to provide a buffer to a reach of coastline where wave attack during the winter months has had a severe impact on existing sewage infrastructure. Although the subsequent beach response was inconclusive, after one year the peakSwash zone characteristics at Ocean Beach, San Francisco, CA
Runup data collected during the summer of 2005 at Ocean Beach, San Francisco, CA are analyzed and considered to be typical summer swash characteristics at this site. Analysis shows that the beach was dissipative with Iribarren numbers between 0.05 and 0.4 and that infragravity energy dominated. Foreshore slopes were mild between 0.01 and 0.05 with swash periods on the order of a minute. PredictedCoupling alongshore variations in wave energy to beach morphologic change using the SWAN wave model at Ocean Beach, San Francisco, CA
Coastal managers have faced increasing pressure to manage their resources wisely over the last century as a result of heightened development and changing environmental forcing. It is crucial to understand seasonal changes in beach volume and shape in order to identify areas vulnerable to accelerated erosion. Shepard (1950) was among the first to quantify seasonal beach cycles. Sonu and Van Beek (1A rapid compatibility analysis of potential offshore sand sources for beaches of the Santa Barbara Littoral Cell
The beaches of the Santa Barbara Littoral Cell, which are narrow as a result of either natural and/or anthropogenic factors, may benefit from nourishment. Sand compatibility is fundamental to beach nourishment success and grain size is the parameter often used to evaluate equivalence. Only after understanding which sand sizes naturally compose beaches in a specific cell, especially the smallest siNon-USGS Publications**
Barnard, P.L., Owen, L.A. and Finkel, R.C., 2004. Style and timing of glacial and paraglacial sedimentation in a monsoonal-influenced high Himalayan environment, the upper Bhagirathi Valley, Garhwal Himalaya. Sedimentary Geology, Volume 165, p. 199-221, doi:10.1016/j.sedgeo.2003.11.009Barnard, P.L., Owen, L.A., Sharma, M.C. and Finkel, R.C., 2004. Late Quaternary (Holocene) landscape evolution of a monsoon-influenced high Himalayan valley, Gori Ganga, Nanda Devi, NE Garhwal. Geomorphology, Volume 61 (1-2), p. 91-110, doi:10.1016/j.geomorph.2003.12.002Barnard, P.L., 2003. The Timing and Nature of Glaciofluvial Erosion and Resedimentation in the Himalaya: the Role of Glacial and Paraglacial Processes in the Evolution of High Mountain Landscapes. Published Ph.D. Thesis, University of California, Riverside, 295 pp.Davis, R.A., Jr. and Barnard, P.L., 2003. Morphodynamics of the barrier-inlet system, west-central Florida. Marine Geology, Volume 200 (1-4), p. 77-101, doi:10.1016/S0025-3227(03)00178-6Finkel, R.C., Owen, L.A., Barnard, P.L. and Caffee, M.W., 2003. Beryllium-10 dating of Mount Everest moraines indicates a strong monsoonal influence and glacial synchroneity throughout the Himalaya. Geology, Volume 31, p. 561-564, doi:10.1130/0091-7613(2003)031<0561:BDOMEM>2.0.CO;2Owen, L.A., Finkel, R.C., Ma, H., Spencer, J.Q., Derbyshire, E., Barnard, P.L. and Caffee, M.W., 2003. Timing and style of Late Quaternary glaciation in northeastern Tibet. Geological Society of America Bulletin, Volume 115 (11), p. 1356-1364, doi:10.1130/B25314.1Owen, L.A., Ma, H., Derbyshire, E., Spencer, J.Q., Barnard, P.L., Zeng, Y.N., Finkel, R.C. and Caffee, M.W., 2003. The timing and style of Late Quaternary glaciation in the La Ji Mountains, NE Tibet: evidence for restricted glaciation during the latter part of the Last Glacial. Zeitschrift für Geomorphologie, Supplemental Volume 130, p. 263-276, ISBN 978-3-443-21130-1Owen, L.A., Spencer, J.Q., Ma, H., Barnard, P.L., Derbyshire, E., Finkel, R.C., Caffee, M.W. and Zeng, Y.N., 2003. Timing of Late Quaternary glaciation along the southwestern slopes of the Qilian Shan, Tibet. Boreas, Volume 32, p. 281-291, doi:10.1111/j.1502-3885.2003.tb01083.xVan der Woerd, J., Owen, L.A., Tapponnier, P., Xiwei, X., Kervyn, F., Finkel, R.C. and Barnard, P.L., 2003. Giant, ~M8 earthquake-triggered ice avalanches in the eastern Kunlun Shan, Northern Tibet: characteristics, nature and dynamics. Geological Society of America Bulletin, Volume 116 (3), p. 394-406, doi:10.1130/B25317.1Barnard, P.L., Owen, L.A., Sharma, M.C. and Finkel, R.C., 2001. Natural and human-induced landsliding in the Garhwal Himalaya of Northern India. Geomorphology, Volume 40, p. 21-35, doi:10.1016/S0169-555X(01)00035-6Davis, R.A., Jr. and Barnard, P.L., 2000. How anthropogenic factors in the back-barrier influence tidal inlet stability: examples from the Gulf Coast of Florida, USA. In: Pye, K. and Allen, J.R.L. (Eds.), Coastal and Estuarine Environments: sedimentology, geomorphology and geoarchaeology. Geological Society, London, Special Publication Number 175, p. 293-303, doi:10.1144/GSL.SP.2000.175.01.21Barnard, P.L. and Owen, L.A., 2000. A selected bibliography for Late Quaternary glaciation in Tibet and Bordering Mountains. Quaternary International, Volume 65/66, p. 193-212Barnard, P.L. and Davis, R.A., Jr., 1999. Anthropogenic vs. natural influences on inlet evolution: west-central Florida. Coastal Sediments ’99 Conference Proceedings, Fire Island, New York, Volume 2, p. 1489-1504Barnard, P.L., 1998. Historical Morphodynamics of Inlet Channels: West-Central Florida. Master’s Thesis, University of South Florida, 179 pp.**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
- Web Tools
- News
Filter Total Items: 18