I am a Research Geophysicist with a background in geotechnical earthquake engineering and engineering geology. My research focuses on using data from near-surface geophysical methods for seismic site characterization. This information is used to estimate earthquake site response and ground motions, models of which are applied in the development of the USGS National Seismic Hazard Mapping Project.
Education
Ph.D., UCLA, 2018, Civil Engineering (Geotechnical Earthquake Engineering)
M.S., UCLA, 2014, Civil Engineering (Geotechnical Earthquake Engineering)
B.S., UCLA, 2013, Civil Engineering
B.S., UCLA, 2013, Geology/Engineering Geology
Publications
Google Scholar
Science and Products
Implementation of basin models and sediment depth terms in the 2023 update of the U.S. National Seismic Hazard Model: Example from Reno, Nevada
We present a framework to evaluate the inclusion of candidate basin depth models in the U.S. Geological Survey National Seismic Hazard Model. We compute intensity measures (peak and spectral amplitudes) from uniformly processed earthquake ground motions in and around the basin of interest and compare these to ground-motion model (GMM) estimates over a range of oscillator periods. The GMMs use dept
NGA-Subduction research program
This article summarizes the Next Generation Attenuation (NGA) Subduction (NGA-Sub) project, a major research program to develop a database and ground motion models (GMMs) for subduction regions. A comprehensive database of subduction earthquakes recorded worldwide was developed. The database includes a total of 214,020 individual records from 1,880 subduction events, which is by far the largest da
Relational database for horizontal‐to‐vertical spectral ratios
Frequency‐dependent horizontal‐to‐vertical spectral ratios (HVSRs) of Fourier amplitudes from three‐component recordings can provide useful information for site response modeling. However, such information is not incorporated into most ground‐motion models, including those from Next‐Generation Attenuation projects, which instead use the time‐averaged shear‐wave velocity (VSVS) in the upper 30 m
2021 U.S. National Seismic Hazard Model for the State of Hawaii
The 2021 U.S. National Seismic Hazard Model (NSHM) for the State of Hawaii updates the two-decades-old former model by incorporating new data and modeling techniques to improve the underlying ground shaking forecasts of tectonic-fault, tectonic-flexure, volcanic, and caldera collapse earthquakes. Two earthquake ground shaking hazard models (public policy and research) are produced that differ in h
Horizontal-to-vertical spectral ratios from California sites: Open-source database and data interpretation to establish site parameters
Frequency-dependent horizontal-to-vertical spectral ratios (HVSR) of Fourier amplitudes from three-component recordings can provide information on one or more site resonant frequencies and relative levels of amplification at those frequencies. Such information is potentially useful for predicting site amplification but is not present in site databases that have been developed over the last 15–20 y
Science and Products
- Publications
Implementation of basin models and sediment depth terms in the 2023 update of the U.S. National Seismic Hazard Model: Example from Reno, Nevada
We present a framework to evaluate the inclusion of candidate basin depth models in the U.S. Geological Survey National Seismic Hazard Model. We compute intensity measures (peak and spectral amplitudes) from uniformly processed earthquake ground motions in and around the basin of interest and compare these to ground-motion model (GMM) estimates over a range of oscillator periods. The GMMs use deptNGA-Subduction research program
This article summarizes the Next Generation Attenuation (NGA) Subduction (NGA-Sub) project, a major research program to develop a database and ground motion models (GMMs) for subduction regions. A comprehensive database of subduction earthquakes recorded worldwide was developed. The database includes a total of 214,020 individual records from 1,880 subduction events, which is by far the largest daRelational database for horizontal‐to‐vertical spectral ratios
Frequency‐dependent horizontal‐to‐vertical spectral ratios (HVSRs) of Fourier amplitudes from three‐component recordings can provide useful information for site response modeling. However, such information is not incorporated into most ground‐motion models, including those from Next‐Generation Attenuation projects, which instead use the time‐averaged shear‐wave velocity (VSVS) in the upper 30 m2021 U.S. National Seismic Hazard Model for the State of Hawaii
The 2021 U.S. National Seismic Hazard Model (NSHM) for the State of Hawaii updates the two-decades-old former model by incorporating new data and modeling techniques to improve the underlying ground shaking forecasts of tectonic-fault, tectonic-flexure, volcanic, and caldera collapse earthquakes. Two earthquake ground shaking hazard models (public policy and research) are produced that differ in hHorizontal-to-vertical spectral ratios from California sites: Open-source database and data interpretation to establish site parameters
Frequency-dependent horizontal-to-vertical spectral ratios (HVSR) of Fourier amplitudes from three-component recordings can provide information on one or more site resonant frequencies and relative levels of amplification at those frequencies. Such information is potentially useful for predicting site amplification but is not present in site databases that have been developed over the last 15–20 y