Terry Messinger is a physical scientist at the Virginia and West Virginia Water Science Center.
Terry has spent his career at the U.S. Geological Survey in Charleston, West Virginia, beginning in 1991. His recent work is related to streamflow quantity, timing, and distribution. He has previously worked in channel geomorphology, water quality, and fish and invertebrate community ecology.
Science and Products
Improving Time of Concentration Estimates for Small Rural Watersheds in the Appalachian Plateaus Physiographic Province, West Virginia
Many culverts and other drainage structures in rural West Virginia are located in small streams or valleys draining 100 acres or less. Design of these structures in West Virginia is generally done using discharge estimates made with widely used and well accepted methods. However, these methods require information including flow-segment length and channel geometry that are poorly characterized for...
Drainage basins of selected streamgages in West Virginia through 2020
Drainage basin areas for 376 USGS streamgages in West Virginia and adjacent states were delineated digitally. The USGS Watershed Boundary Dataset HUC12 sub-watershed lines were used as outer limits of basins, and heads-up digitizing was used to delineate boundaries from the stream gage to the HUC12 boundary. The USGS National Map was used, as background, to show both contour lines and digital elev
Ratings and estimated provisional streamflow for streamgages in Virginia, water years 1991 through 2013
The U.S. Geological Survey, in cooperation with the Virginia Department of Environmental Quality, has quantified several measures of rating stability and the frequency and magnitude of changes to ratings through time for 174 real-time continuous streamgages active in Virginia as of September 30, 2013. Alternative flow (AltFlow) tables were developed as a method of estimating provisional flow data.
Filter Total Items: 17
Occurrence of per- and polyfluoroalkyl substances and inorganic analytes in groundwater and surface water used as sources for public water supply in West Virginia
Per- and polyfluoroalkyl substances (PFAS) are widely observed anthropogenic compounds found in water supplies worldwide and increasingly linked with adverse health effects in humans. In 2019, the West Virginia Legislature recognized the contamination risk to public source-water supplies posed by PFAS and passed a resolution that required a statewide PFAS study. The purpose of the resolution was t
Rating stability, and frequency and magnitude of shifts, for streamgages in Virginia through water year 2013
The U.S. Geological Survey, in cooperation with the Virginia Department of Environmental Quality, has quantified several measures of rating stability and the frequency and magnitude of changes to ratings through time for 174 real-time continuous streamgages active in Virginia as of September 30, 2013. Generalized additive models (GAMs) were fitted through all available flow measurements for all th
Annual and average estimates of water-budget components based on hydrograph separation and PRISM precipitation for gaged basins in the Appalachian Plateaus Region, 1900-2011
As part of the U.S. Geological Survey’s Groundwater Resources Program study of the Appalachian Plateaus aquifers, annual and average estimates of water-budget components based on hydrograph separation and precipitation data from parameter-elevation regressions on independent slopes model (PRISM) were determined at 849 continuous-record streamflow-gaging stations from Mississippi to New York and co
Water quality of groundwater and stream base flow in the Marcellus Shale Gas Field of the Monongahela River Basin, West Virginia, 2011-12
The Marcellus Shale gas field underlies portions of New York, Pennsylvania, Ohio, Virginia, Maryland, Tennessee, and West Virginia. Development of hydraulic fracturing and horizontal drilling technology led to extensive development of gas from the Marcellus Shale beginning about 2007. The need to identify and monitor changes in water-quality conditions related to development of the Marcellus Shale
Correlations of daily flows at streamgages in and near West Virginia, 1930-2011, and streamflow characteristics relevant to the use of index streamgages
Correlation of flows at pairs of streamgages were evaluated using a Spearman’s rho correlation coefficient to better identify gages that can be used as index gages to estimate daily flow at ungaged stream sites in West Virginia. Much of West Virginia (77 percent) is within areas where Spearman’s rho for daily streamflow between streamgages on unregulated streams (unregulated streamgages) is greate
Estimation of traveltime and longitudinal dispersion in streams in West Virginia
Traveltime and dispersion data are important for understanding and responding to spills of contaminants in waterways. The U.S. Geological Survey (USGS), in cooperation with West Virginia Bureau for Public Health, Office of Environmental Health Services, compiled and evaluated traveltime and longitudinal dispersion data representative of many West Virginia waterways. Traveltime and dispersion data
Regional Curves for Bankfull Channel Characteristics in the Appalachian Plateaus, West Virginia
Streams in the Appalachian Plateaus Physiographic Province in West Virginia were classified as a single region on the basis of bankfull characteristics. Regression lines for annual peak flow and drainage area measured at streamgages in the study area at recurrence intervals between 1.2 and 1.7 years fell within the 99-percent confidence interval of the regression line for bankfull flow. Channel ch
Development and analysis of regional curves for streams in the non-urban valley and ridge physiographic province, Maryland, Virginia, and West Virginia
Regression relations for bankfull stream characteristics based on drainage area (often called 'regional curves') are used in natural stream channel design to verify field determinations of bankfull discharge and stream channel characteristics. Bankfull stream characteristics were assessed for stream reaches at 41 streamflow-gaging stations in the Valley and Ridge Physiographic Province in Maryland
Comparison of storm response of streams in small, unmined and valley-filled watersheds, 1999-2001, Ballard fork, West Virginia
During storms when rainfall intensity exceeded about 1 inch per hour, peak unit runoff from the Unnamed Tributary (surface-mined and filled) Watershed exceeded peak unit runoff from the Spring Branch (unmined) Watershed in the Ballard Fork Watershed in southern West Virginia. During most storms, those with intensity less than about 1 inch per hour, peak unit (area-normalized) flows were greater fr
Benthic invertebrate communities and their responses to selected environmental factors in the Kanawha River basin, West Virginia, Virginia, and North Carolina
The effects of selected environmental factors on the composition and structure of benthic invertebrate communities in the Kanawha River Basin of West Virginia, Virginia and North Carolina were investigated in 1997 and 1998. Environmental factors investigated include physiography, land-use pattern, streamwater chemistry, streambed- sediment chemistry, and habitat characteristics. Land-use patterns
Environmental setting and its relations to water quality in the Kanawha River basin
The Kanawha River and its major tributary, the New River, drain 12,233 mi2 in West Virginia, Virginia, and North Carolina. Altitude ranges from about 550 ft to more than 4,700 ft. The Kanawha River Basin is mountainous, and includes parts of three physiographic provinces, the Blue Ridge (17 percent), Valley and Ridge (23 percent), and Appalachian Plateaus (60 percent). In the Appalachian Plateaus
Water quality in the Kanawha-New River basin: West Virginia, Virginia, and North Carolina, 1996-98
This report summarizes major findings about water quality in the Kanawha-New River basin that emerged from an assessment conducted between 1996 and 1998 by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. Water quality is discussed in terms of local and regional issues and compared to conditions found in all 36 NAWQA study areas assessed to date. Findings also a
Science and Products
- Science
Improving Time of Concentration Estimates for Small Rural Watersheds in the Appalachian Plateaus Physiographic Province, West Virginia
Many culverts and other drainage structures in rural West Virginia are located in small streams or valleys draining 100 acres or less. Design of these structures in West Virginia is generally done using discharge estimates made with widely used and well accepted methods. However, these methods require information including flow-segment length and channel geometry that are poorly characterized for... - Data
Drainage basins of selected streamgages in West Virginia through 2020
Drainage basin areas for 376 USGS streamgages in West Virginia and adjacent states were delineated digitally. The USGS Watershed Boundary Dataset HUC12 sub-watershed lines were used as outer limits of basins, and heads-up digitizing was used to delineate boundaries from the stream gage to the HUC12 boundary. The USGS National Map was used, as background, to show both contour lines and digital elevRatings and estimated provisional streamflow for streamgages in Virginia, water years 1991 through 2013
The U.S. Geological Survey, in cooperation with the Virginia Department of Environmental Quality, has quantified several measures of rating stability and the frequency and magnitude of changes to ratings through time for 174 real-time continuous streamgages active in Virginia as of September 30, 2013. Alternative flow (AltFlow) tables were developed as a method of estimating provisional flow data. - Publications
Filter Total Items: 17
Occurrence of per- and polyfluoroalkyl substances and inorganic analytes in groundwater and surface water used as sources for public water supply in West Virginia
Per- and polyfluoroalkyl substances (PFAS) are widely observed anthropogenic compounds found in water supplies worldwide and increasingly linked with adverse health effects in humans. In 2019, the West Virginia Legislature recognized the contamination risk to public source-water supplies posed by PFAS and passed a resolution that required a statewide PFAS study. The purpose of the resolution was tRating stability, and frequency and magnitude of shifts, for streamgages in Virginia through water year 2013
The U.S. Geological Survey, in cooperation with the Virginia Department of Environmental Quality, has quantified several measures of rating stability and the frequency and magnitude of changes to ratings through time for 174 real-time continuous streamgages active in Virginia as of September 30, 2013. Generalized additive models (GAMs) were fitted through all available flow measurements for all thAnnual and average estimates of water-budget components based on hydrograph separation and PRISM precipitation for gaged basins in the Appalachian Plateaus Region, 1900-2011
As part of the U.S. Geological Survey’s Groundwater Resources Program study of the Appalachian Plateaus aquifers, annual and average estimates of water-budget components based on hydrograph separation and precipitation data from parameter-elevation regressions on independent slopes model (PRISM) were determined at 849 continuous-record streamflow-gaging stations from Mississippi to New York and coWater quality of groundwater and stream base flow in the Marcellus Shale Gas Field of the Monongahela River Basin, West Virginia, 2011-12
The Marcellus Shale gas field underlies portions of New York, Pennsylvania, Ohio, Virginia, Maryland, Tennessee, and West Virginia. Development of hydraulic fracturing and horizontal drilling technology led to extensive development of gas from the Marcellus Shale beginning about 2007. The need to identify and monitor changes in water-quality conditions related to development of the Marcellus ShaleCorrelations of daily flows at streamgages in and near West Virginia, 1930-2011, and streamflow characteristics relevant to the use of index streamgages
Correlation of flows at pairs of streamgages were evaluated using a Spearman’s rho correlation coefficient to better identify gages that can be used as index gages to estimate daily flow at ungaged stream sites in West Virginia. Much of West Virginia (77 percent) is within areas where Spearman’s rho for daily streamflow between streamgages on unregulated streams (unregulated streamgages) is greateEstimation of traveltime and longitudinal dispersion in streams in West Virginia
Traveltime and dispersion data are important for understanding and responding to spills of contaminants in waterways. The U.S. Geological Survey (USGS), in cooperation with West Virginia Bureau for Public Health, Office of Environmental Health Services, compiled and evaluated traveltime and longitudinal dispersion data representative of many West Virginia waterways. Traveltime and dispersion dataRegional Curves for Bankfull Channel Characteristics in the Appalachian Plateaus, West Virginia
Streams in the Appalachian Plateaus Physiographic Province in West Virginia were classified as a single region on the basis of bankfull characteristics. Regression lines for annual peak flow and drainage area measured at streamgages in the study area at recurrence intervals between 1.2 and 1.7 years fell within the 99-percent confidence interval of the regression line for bankfull flow. Channel chDevelopment and analysis of regional curves for streams in the non-urban valley and ridge physiographic province, Maryland, Virginia, and West Virginia
Regression relations for bankfull stream characteristics based on drainage area (often called 'regional curves') are used in natural stream channel design to verify field determinations of bankfull discharge and stream channel characteristics. Bankfull stream characteristics were assessed for stream reaches at 41 streamflow-gaging stations in the Valley and Ridge Physiographic Province in MarylandComparison of storm response of streams in small, unmined and valley-filled watersheds, 1999-2001, Ballard fork, West Virginia
During storms when rainfall intensity exceeded about 1 inch per hour, peak unit runoff from the Unnamed Tributary (surface-mined and filled) Watershed exceeded peak unit runoff from the Spring Branch (unmined) Watershed in the Ballard Fork Watershed in southern West Virginia. During most storms, those with intensity less than about 1 inch per hour, peak unit (area-normalized) flows were greater frBenthic invertebrate communities and their responses to selected environmental factors in the Kanawha River basin, West Virginia, Virginia, and North Carolina
The effects of selected environmental factors on the composition and structure of benthic invertebrate communities in the Kanawha River Basin of West Virginia, Virginia and North Carolina were investigated in 1997 and 1998. Environmental factors investigated include physiography, land-use pattern, streamwater chemistry, streambed- sediment chemistry, and habitat characteristics. Land-use patternsEnvironmental setting and its relations to water quality in the Kanawha River basin
The Kanawha River and its major tributary, the New River, drain 12,233 mi2 in West Virginia, Virginia, and North Carolina. Altitude ranges from about 550 ft to more than 4,700 ft. The Kanawha River Basin is mountainous, and includes parts of three physiographic provinces, the Blue Ridge (17 percent), Valley and Ridge (23 percent), and Appalachian Plateaus (60 percent). In the Appalachian PlateausWater quality in the Kanawha-New River basin: West Virginia, Virginia, and North Carolina, 1996-98
This report summarizes major findings about water quality in the Kanawha-New River basin that emerged from an assessment conducted between 1996 and 1998 by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. Water quality is discussed in terms of local and regional issues and compared to conditions found in all 36 NAWQA study areas assessed to date. Findings also a - Multimedia