Travis is a Research Physical Scientist at the Astrogeology Science Center.
Professional Experience
Science Team Member – NASA Mars 2020, Perseverance Rover
Science Team Member – NASA Mars Science Laboratory, Curiosity Rover
Science and Products
Availability, documentation, & community support for an open-source machine learning tool
We will make cutting-edge spectral analysis and machine learning algorithms available to remote sensing and chemical quantification communities, regardless of the user’s programming skills, by releasing, documenting, presenting, and developing tutorials for the Python Hyperspectral Analysis Tool.
The role of giant impacts in planet formation
Planets are expected to conclude their growth through a series of giant impacts: energetic, global events that significantly alter planetary composition and evolution. Computer models and theory have elucidated the diverse outcomes of giant impacts in detail, improving our ability to interpret collision conditions from observations of their remnants. However, many open questions remain, as even th
Authors
Travis S.J. Gabriel, Saverio Cambioni
Assessment of lunar resource exploration in 2022
The idea of mining the Moon, once purely science-fiction, is now on the verge of becoming reality. Taking advantage of the resources on the Moon is part of the plans of many nations and some enterprising commercial entities; demonstrating in-situ (in place) resource utilization near the lunar south pole is an explicit goal of the United States’ Artemis program. Economic extraction and sustainable
Authors
Laszlo P. Keszthelyi, Joshua A. Coyan, Kristen A. Bennett, Lillian R. Ostrach, Lisa R. Gaddis, Travis S.J. Gabriel, Justin Hagerty
An examination of soil crusts on the floor of Jezero crater, Mars
Martian soils are critically important for understanding the history of Mars, past potentially habitable environments, returned samples, and future human exploration. This paper examines soil crusts on the floor of Jezero crater encountered during initial phases of the Mars 2020 mission. Soil surface crusts have been observed on Mars at other locations, starting with the two Viking Lander missions
Authors
E.M. Hausrath, C.T. Adcock, A. Bechtold, P. S. A. Beck, K. Benison, A. Brown, E.L. Cardarelli, N.A. Carman, B. Chide, J. Christian, B.C. Clark, E. Cloutis, A. Cousin, O. Forni, Travis S.J. Gabriel, O. Gasnault, M. P. Golombek, F. Gomez, M.H. Hecht, T.L.J. Henley, J. Huidobro, J. C. Johnson, M.W.M. Jones, P.B. Kelemen, A. Knight, J.A. Lasue, S. Le Mouelic, J.M. Madariaga, J. N. Maki, L. Mandon, G. Martinez, J. Martinez-Frias, T.H. McConnochie, P.-Y. Meslin, M.-P. Zorzano, H. Newsom, G. Paar, N. Randazzo, C. Royer, S. Siljestroem, M.E. Schmidt, S. Schroeder, M.A. Sephton, R. Sullivan, N. Turenne, A. Udry, S. VanBommel, A. Vaughan, R.C. Wiens, N. Williams
Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars
The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater’s sedimentary delta, finding the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Séítah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Fe-Mg carbon
Authors
K.A. Farley, K.M. Stack, D.L. Shuster, B.H.N. Horgan, J.A. Hurowitz, J. D. Tarnas, J.I. Simon, V.Z. Sun, E.L. Scheller, K.R. Moore, S.M. McLennan, P.M. Vasconcelos, R.C. Wiens, A.H. Treiman, L.E. Mayhew, O. Beyssac, T.V. Kizovski, N. J. Tosca, K.H. Williford, L.S. Crumpler, L.W. Beegle, J.F. Bell III, B.L. Ehlmann, Y. Liu, J.N. Maki, M.E. Schmidt, A.C. Allwood, H.E.F. Amundsen, R. Ghartia, T. Bosak, A.J. Brown, B.C. Clark, A. Cousin, O. Forni, Travis S.J. Gabriel, Y. Goreva, S. Gupta, S.-E. Hamran, C.D.K. Herd, K. Hickman-Lewis, J.R. Johnson, L.C. Kah, P.B. Kelemen, K.B. Kinch, L. Mandon, N. Mangold, C. Quantun-Nataf, M.S. Rice, P.S. Russell, S. Sharma, S. Siljestroem, A. Steele, R. Sullivan, M. Wadhwa, B. P. Weiss, A.J. Williams, B.V. Wogsland, P.A. Willis, T.A. Acosta-Maeda, B. Peck, K. Benzerara, S. Bernard, A.S. Burton, E.L. Cardarelli, B. Chide, E. Clave, E.A. Cloutis, A.D. Czaja, V. Debaille, E. Dehouck, A.G. Fairen, D.T. Flannery, S.Z. Fleron, T. Fouchet, J. Frydenvang, B.J. Garczynski, E.F. Gibbons, E.M. Hausrath, A.G. Hayes, J. Henneke, J.L. Jorgensen, E.M. Kelly, J. Lasue, S. Le Mouelic, J.M. Madariaga, S. Maurice, M. Merusi, P.-Y. Meslin, S.M. Milkovich, C.C. Million, R.C. Moeller, J.I. Nunez, A.M. Ollila, G. Paar, D.A. Paige, D.A.K. Pedersen, P. Pilleri, C. Pilorget, P.C. Pinet, J.W. Rice Jr., C. Royer, V. Sautter, M. Schulte, M.A. Sephton, S.K. Sharma, S.F. Sholes, N. Spanovich, M. St. Clair, C.D. Tate, K. Uckert, S.J. VanBommel, A.G. Yanchilina, M.-P. Zorzano
In situ recording of Mars soundscape
Prior to the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (i) atmospheric turbulence changes at centimeter scales or smaller at the point where molecular viscosity converts kinetic energy into heat1, (ii) the speed of sound varies at the surface with frequency2,3, and (iii) high frequency waves are strongly attenuated with distance in CO22–4. How
Authors
Sylvestre Maurice, Baptiste Chide, Naomi Murdoch, Ralph D. Lorenz, David Mimoun, Roger C. Wiens, Alexander E. Stott, X. Jacob, T. Bertrand, F. Montmessin, Nina L. Lanza, C. Alvarez-Llamas, S. M. Angel, M. Aung, J. Balaram, O. Beyssac, A. Cousin, G. Delory, O. Forni, T. Fouchet, O. Gasnault, H. Grip, M. Hecht, J. Hoffman, J. Laserna, J. Lasue, J. N. Maki, J. McClean, P.-Y. Meslin, S. Le Mouélic, A. Munguira, C. E. Newman, J. A. Rodríguez Manfredi, J. Moros, A. Ollila, P. Pilleri, S. E. Schröder, M. de la Torre Juárez, T. Tzanetos, K. Stack, K. Farley, K. H. Williford, T. Acosta-Maeda, Ryan Anderson, D.M. Applin, G. Arana, M. Bassas-Portus, R. Beal, P. S. A. Beck, K. Benzerara, S. Bernard, P. Bernardi, T. Bosak, B. Bousquet, A. Brown, A. Cadu, P. Caïs, K. Castro, E. Clavé, S. M. Clegg, E. Cloutis, S. Connell, A. Debus, E. Dehouck, D. Delapp, C. Donny, A. Dorresoundiram, G. Dromart, B. Dubois, C. Fabre, A. Fau, W. F. Fischer, R. Francis, J. Frydenvang, Travis S.J. Gabriel, E. Gibbons, I. Gontijo, J. R. Johnson, H. Kalucha, E. Kelly, E. Knutsen, G. Lacombe, C. Legett, R. Leveille, E. Lewin, G. Lopez-Reyes, E. Lorigny, J. M. Madariaga, M. B. Madsen, S. Madsen, L. Mandon, N. Mangold, M. Mann, J.-A. Manrique, J. Martinez-Frias, L. E. Mayhew, F. Meunier, T. McConnochie, S. M. McLennan, G. Montagnac, V. Mousset, T. Aliste Nelson, R. T. Newell, Y. Parot, C. Pilorget, P. Pinet, G. Pont, C. Quantin-Nataf, B. Quertier, W. Rapin, A. Reyes-Newell, S. Robinson, L. Rochas, C. Royer, F. Rull, V. Sautter, S. Sharma, V. Shridar, A. Sournac, M. Toplis, I. Torre-Fdez, N. Turenne, A. Udry, M. Veneranda, D. Venhaus, D. Vogt, P. Willis
Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy
The SuperCam instrument on the Perseverance Mars 2020 rover uses a pulsed 1064 nm laser to ablate targets at a distance and conduct laser induced breakdown spectroscopy (LIBS) by analyzing the light from the resulting plasma. SuperCam LIBS spectra are preprocessed to remove ambient light, noise, and the continuum signal present in LIBS observations. Prior to quantification, spectra are masked to r
Authors
Ryan Anderson, Olivier Forni, Agnes Cousin, Roger C. Wiens, Samuel M. Clegg, Jens Frydenvang, Travis S.J. Gabriel, Ann M. Ollila, Susanne Schröder, Olivier Beyssac, Erin Gibbons, David Vogt, Elise Clave, Jose-Antonio Manrique, Carey Legett, Paolo Pilleri, Raymond Newell, Joseph Sarrao, Sylvestre Maurice, Gorka Arana, Karim Benzerara, Pernelle Bernardi, Sylvain Bernard, Bruno Bousquet, Adrian J. Brown, Cesar Alvarez-Llamas, Baptiste Chide, Edward A. Cloutis, Jade Comellas, Stephanie Connell, Erwin Dehouck, Dorothea Delapp, Ari Essunfeld, Cecile Fabre, Thierry Fouchet, Cristina Garcia, Laura Garcia-Gomez, Patrick J. Gasda, Olivier Gasnault, Elisabeth Hausrath, Nina L. Lanza, Javier Laserna, Jeremie Lasue, Guillermo Lopez, Juan Manuel Madariaga, Lucia Mandon, Nicolas Mangold, Pierre-Yves Meslin, Marion Nachon, Anthony Nelson, Horton E. Newsom, Adriana Reyes-Newell, Scott Robinson, Fernando Rull, Shiv Sharma, Justin I Simon, Pablo Sobron, Imanol Torre Fernandez, Arya Udry, Dawn Venhaus, Scott McLennan, Richard V. Morris, Bethany L. Ehlmann
Clustering supported classification of ChemCam data from Gale crater, Mars
The Chemistry and Camera (ChemCam) instrument on board the MSL rover Curiosity has collected a very large and unique dataset of in-situ spectra and images of Mars since landing in August 2012. More than 800,000 single shot LIBS (laser-induced breakdown spectroscopy) spectra measured on more than 2,500 individual targets were returned so far by ChemCam. Such a dataset is ideally suited for the appl
Authors
K. Rammelkamp, Olivier Gasnault, Olivier Forni, Candice C. Bedford, Erwin Dehouck, Agnès Cousin, Jeremie Lasue, Gaël David, Travis S.J. Gabriel, Sylvestre Maurice, Roger C. Wiens
Active neutron interrogation experiments and simulation verification using the SIngle-scintillator Neutron and Gamma-Ray spectrometer (SINGR) for geosciences
We present a new SIngle-scintillator Neutron and Gamma Ray spectrometer (SINGR) instrument for use with both passive and active measurement techniques. Here we discuss the application of SINGR for planetary exploration missions, however, hydrology, nuclear non-proliferation, and resource prospecting are all potential areas where the instrument could be applied. SINGR uses an elpasolite scintillato
Authors
Lena E. Heffern, Craig J. Hardgrove, Ann Parsons, E. B. Johnson, R. Starr, G. Stoddard, R. E. Blakeley, T. Prettyman, Travis S.J. Gabriel, H. Barnaby, J. Christian, M.A. Unzueta, C. Tate, A. Martin, J. Moersch
Science and Products
- Science
Availability, documentation, & community support for an open-source machine learning tool
We will make cutting-edge spectral analysis and machine learning algorithms available to remote sensing and chemical quantification communities, regardless of the user’s programming skills, by releasing, documenting, presenting, and developing tutorials for the Python Hyperspectral Analysis Tool. - Publications
The role of giant impacts in planet formation
Planets are expected to conclude their growth through a series of giant impacts: energetic, global events that significantly alter planetary composition and evolution. Computer models and theory have elucidated the diverse outcomes of giant impacts in detail, improving our ability to interpret collision conditions from observations of their remnants. However, many open questions remain, as even thAuthorsTravis S.J. Gabriel, Saverio CambioniAssessment of lunar resource exploration in 2022
The idea of mining the Moon, once purely science-fiction, is now on the verge of becoming reality. Taking advantage of the resources on the Moon is part of the plans of many nations and some enterprising commercial entities; demonstrating in-situ (in place) resource utilization near the lunar south pole is an explicit goal of the United States’ Artemis program. Economic extraction and sustainableAuthorsLaszlo P. Keszthelyi, Joshua A. Coyan, Kristen A. Bennett, Lillian R. Ostrach, Lisa R. Gaddis, Travis S.J. Gabriel, Justin HagertyAn examination of soil crusts on the floor of Jezero crater, Mars
Martian soils are critically important for understanding the history of Mars, past potentially habitable environments, returned samples, and future human exploration. This paper examines soil crusts on the floor of Jezero crater encountered during initial phases of the Mars 2020 mission. Soil surface crusts have been observed on Mars at other locations, starting with the two Viking Lander missionsAuthorsE.M. Hausrath, C.T. Adcock, A. Bechtold, P. S. A. Beck, K. Benison, A. Brown, E.L. Cardarelli, N.A. Carman, B. Chide, J. Christian, B.C. Clark, E. Cloutis, A. Cousin, O. Forni, Travis S.J. Gabriel, O. Gasnault, M. P. Golombek, F. Gomez, M.H. Hecht, T.L.J. Henley, J. Huidobro, J. C. Johnson, M.W.M. Jones, P.B. Kelemen, A. Knight, J.A. Lasue, S. Le Mouelic, J.M. Madariaga, J. N. Maki, L. Mandon, G. Martinez, J. Martinez-Frias, T.H. McConnochie, P.-Y. Meslin, M.-P. Zorzano, H. Newsom, G. Paar, N. Randazzo, C. Royer, S. Siljestroem, M.E. Schmidt, S. Schroeder, M.A. Sephton, R. Sullivan, N. Turenne, A. Udry, S. VanBommel, A. Vaughan, R.C. Wiens, N. WilliamsAqueously altered igneous rocks sampled on the floor of Jezero crater, Mars
The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater’s sedimentary delta, finding the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Séítah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Fe-Mg carbonAuthorsK.A. Farley, K.M. Stack, D.L. Shuster, B.H.N. Horgan, J.A. Hurowitz, J. D. Tarnas, J.I. Simon, V.Z. Sun, E.L. Scheller, K.R. Moore, S.M. McLennan, P.M. Vasconcelos, R.C. Wiens, A.H. Treiman, L.E. Mayhew, O. Beyssac, T.V. Kizovski, N. J. Tosca, K.H. Williford, L.S. Crumpler, L.W. Beegle, J.F. Bell III, B.L. Ehlmann, Y. Liu, J.N. Maki, M.E. Schmidt, A.C. Allwood, H.E.F. Amundsen, R. Ghartia, T. Bosak, A.J. Brown, B.C. Clark, A. Cousin, O. Forni, Travis S.J. Gabriel, Y. Goreva, S. Gupta, S.-E. Hamran, C.D.K. Herd, K. Hickman-Lewis, J.R. Johnson, L.C. Kah, P.B. Kelemen, K.B. Kinch, L. Mandon, N. Mangold, C. Quantun-Nataf, M.S. Rice, P.S. Russell, S. Sharma, S. Siljestroem, A. Steele, R. Sullivan, M. Wadhwa, B. P. Weiss, A.J. Williams, B.V. Wogsland, P.A. Willis, T.A. Acosta-Maeda, B. Peck, K. Benzerara, S. Bernard, A.S. Burton, E.L. Cardarelli, B. Chide, E. Clave, E.A. Cloutis, A.D. Czaja, V. Debaille, E. Dehouck, A.G. Fairen, D.T. Flannery, S.Z. Fleron, T. Fouchet, J. Frydenvang, B.J. Garczynski, E.F. Gibbons, E.M. Hausrath, A.G. Hayes, J. Henneke, J.L. Jorgensen, E.M. Kelly, J. Lasue, S. Le Mouelic, J.M. Madariaga, S. Maurice, M. Merusi, P.-Y. Meslin, S.M. Milkovich, C.C. Million, R.C. Moeller, J.I. Nunez, A.M. Ollila, G. Paar, D.A. Paige, D.A.K. Pedersen, P. Pilleri, C. Pilorget, P.C. Pinet, J.W. Rice Jr., C. Royer, V. Sautter, M. Schulte, M.A. Sephton, S.K. Sharma, S.F. Sholes, N. Spanovich, M. St. Clair, C.D. Tate, K. Uckert, S.J. VanBommel, A.G. Yanchilina, M.-P. ZorzanoIn situ recording of Mars soundscape
Prior to the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (i) atmospheric turbulence changes at centimeter scales or smaller at the point where molecular viscosity converts kinetic energy into heat1, (ii) the speed of sound varies at the surface with frequency2,3, and (iii) high frequency waves are strongly attenuated with distance in CO22–4. HowAuthorsSylvestre Maurice, Baptiste Chide, Naomi Murdoch, Ralph D. Lorenz, David Mimoun, Roger C. Wiens, Alexander E. Stott, X. Jacob, T. Bertrand, F. Montmessin, Nina L. Lanza, C. Alvarez-Llamas, S. M. Angel, M. Aung, J. Balaram, O. Beyssac, A. Cousin, G. Delory, O. Forni, T. Fouchet, O. Gasnault, H. Grip, M. Hecht, J. Hoffman, J. Laserna, J. Lasue, J. N. Maki, J. McClean, P.-Y. Meslin, S. Le Mouélic, A. Munguira, C. E. Newman, J. A. Rodríguez Manfredi, J. Moros, A. Ollila, P. Pilleri, S. E. Schröder, M. de la Torre Juárez, T. Tzanetos, K. Stack, K. Farley, K. H. Williford, T. Acosta-Maeda, Ryan Anderson, D.M. Applin, G. Arana, M. Bassas-Portus, R. Beal, P. S. A. Beck, K. Benzerara, S. Bernard, P. Bernardi, T. Bosak, B. Bousquet, A. Brown, A. Cadu, P. Caïs, K. Castro, E. Clavé, S. M. Clegg, E. Cloutis, S. Connell, A. Debus, E. Dehouck, D. Delapp, C. Donny, A. Dorresoundiram, G. Dromart, B. Dubois, C. Fabre, A. Fau, W. F. Fischer, R. Francis, J. Frydenvang, Travis S.J. Gabriel, E. Gibbons, I. Gontijo, J. R. Johnson, H. Kalucha, E. Kelly, E. Knutsen, G. Lacombe, C. Legett, R. Leveille, E. Lewin, G. Lopez-Reyes, E. Lorigny, J. M. Madariaga, M. B. Madsen, S. Madsen, L. Mandon, N. Mangold, M. Mann, J.-A. Manrique, J. Martinez-Frias, L. E. Mayhew, F. Meunier, T. McConnochie, S. M. McLennan, G. Montagnac, V. Mousset, T. Aliste Nelson, R. T. Newell, Y. Parot, C. Pilorget, P. Pinet, G. Pont, C. Quantin-Nataf, B. Quertier, W. Rapin, A. Reyes-Newell, S. Robinson, L. Rochas, C. Royer, F. Rull, V. Sautter, S. Sharma, V. Shridar, A. Sournac, M. Toplis, I. Torre-Fdez, N. Turenne, A. Udry, M. Veneranda, D. Venhaus, D. Vogt, P. WillisPost-landing major element quantification using SuperCam laser induced breakdown spectroscopy
The SuperCam instrument on the Perseverance Mars 2020 rover uses a pulsed 1064 nm laser to ablate targets at a distance and conduct laser induced breakdown spectroscopy (LIBS) by analyzing the light from the resulting plasma. SuperCam LIBS spectra are preprocessed to remove ambient light, noise, and the continuum signal present in LIBS observations. Prior to quantification, spectra are masked to rAuthorsRyan Anderson, Olivier Forni, Agnes Cousin, Roger C. Wiens, Samuel M. Clegg, Jens Frydenvang, Travis S.J. Gabriel, Ann M. Ollila, Susanne Schröder, Olivier Beyssac, Erin Gibbons, David Vogt, Elise Clave, Jose-Antonio Manrique, Carey Legett, Paolo Pilleri, Raymond Newell, Joseph Sarrao, Sylvestre Maurice, Gorka Arana, Karim Benzerara, Pernelle Bernardi, Sylvain Bernard, Bruno Bousquet, Adrian J. Brown, Cesar Alvarez-Llamas, Baptiste Chide, Edward A. Cloutis, Jade Comellas, Stephanie Connell, Erwin Dehouck, Dorothea Delapp, Ari Essunfeld, Cecile Fabre, Thierry Fouchet, Cristina Garcia, Laura Garcia-Gomez, Patrick J. Gasda, Olivier Gasnault, Elisabeth Hausrath, Nina L. Lanza, Javier Laserna, Jeremie Lasue, Guillermo Lopez, Juan Manuel Madariaga, Lucia Mandon, Nicolas Mangold, Pierre-Yves Meslin, Marion Nachon, Anthony Nelson, Horton E. Newsom, Adriana Reyes-Newell, Scott Robinson, Fernando Rull, Shiv Sharma, Justin I Simon, Pablo Sobron, Imanol Torre Fernandez, Arya Udry, Dawn Venhaus, Scott McLennan, Richard V. Morris, Bethany L. EhlmannClustering supported classification of ChemCam data from Gale crater, Mars
The Chemistry and Camera (ChemCam) instrument on board the MSL rover Curiosity has collected a very large and unique dataset of in-situ spectra and images of Mars since landing in August 2012. More than 800,000 single shot LIBS (laser-induced breakdown spectroscopy) spectra measured on more than 2,500 individual targets were returned so far by ChemCam. Such a dataset is ideally suited for the applAuthorsK. Rammelkamp, Olivier Gasnault, Olivier Forni, Candice C. Bedford, Erwin Dehouck, Agnès Cousin, Jeremie Lasue, Gaël David, Travis S.J. Gabriel, Sylvestre Maurice, Roger C. WiensActive neutron interrogation experiments and simulation verification using the SIngle-scintillator Neutron and Gamma-Ray spectrometer (SINGR) for geosciences
We present a new SIngle-scintillator Neutron and Gamma Ray spectrometer (SINGR) instrument for use with both passive and active measurement techniques. Here we discuss the application of SINGR for planetary exploration missions, however, hydrology, nuclear non-proliferation, and resource prospecting are all potential areas where the instrument could be applied. SINGR uses an elpasolite scintillatoAuthorsLena E. Heffern, Craig J. Hardgrove, Ann Parsons, E. B. Johnson, R. Starr, G. Stoddard, R. E. Blakeley, T. Prettyman, Travis S.J. Gabriel, H. Barnaby, J. Christian, M.A. Unzueta, C. Tate, A. Martin, J. Moersch