Skip to main content
U.S. flag

An official website of the United States government

Maps

The Astrogeology Science Center's mission includes producing planetary maps and cartographic products which reveal topography, geology, topology, image mosaics and more, all made available to the international scientific community and the general public as a national resource.

Filter Total Items: 81

Geologic map of MTM -40252 and -40257 quadrangles, Reull Vallis region of Mars

Mars Transverse Mercator (MTM) quadrangles -40252 and -40257 cover a portion of the highlands of Promethei Terra northeast of the Hellas basin. The map area consists of heavily cratered ancient highland materials of moderate to high relief, isolated knobs and massifs of rugged mountainous materials, extensive tracts of smooth and channeled plains, and other surficial deposits. Reull Vallis, an app

Geologic map transecting the highland/lowland boundary zone, Arabia Terra, Mars; quadrangles 30332, 35332, 40332, and 45332

Arabia Terra is a large region of cratered terrane extending from about 20° W. longitude eastward across the prime meridian to about 300° W. longitude for an average east-west width of about 5,000 km. The northern boundary ranges from 40° N. to 45° N.; the southern boundary is a poorly defined zone at about 0° N. Thus, the north-south width is about 2,500 km. Except for the westernmost part, Arabi

Controlled photomosaic map of Europa Je 15 M CMN

This sheet is one in a series of maps of the Galilean satellites of Jupiter at a nominal scale of 1:15,000,000. This series is based on data from the Galileo Orbiter Solid-State Imaging (SSI) camera and the Voyager 1 and 2 spacecraft.

Geologic Map of the Hellas Region of Mars

INTRODUCTION This geologic map of the Hellas region focuses on the stratigraphic, structural, and erosional histories associated with the largest well-preserved impact basin on Mars. Along with the uplifted rim and huge, partly infilled inner basin (Hellas Planitia) of the Hellas basin impact structure, the map region includes areas of ancient highland terrain, broad volcanic edifices and depos

Geologic map of the Pandrosos Dorsa Quadrangle (V-5), Venus

Introduction The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan had the objectives of (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Ven

Geologic map of the MTM 25047 and 20047 quadrangles, central Chryse Planitia/Viking 1 Lander site, Mars

This map uses Viking Orbiter image data and Viking 1 Lander image data to evaluate the geologic history of a part of Chryse Planitia, Mars. The map area lies at the termini of the Maja and Kasei Valles outwash channels and includes the site of the Viking 1 Lander. The photomosaic base for these quadrangles was assembled from 98 Viking Orbiter frames comprising 1204 pixels per line and 1056 lines a

Geologic Map of the Thaumasia Region, Mars

The geology of the Thaumasia region (fig. 1, sheet 3) includes a wide array of rock materials, depositional and erosional landforms, and tectonic structures. The region is dominated by the Thaumasia plateau, which includes central high lava plains ringed by highly deformed highlands; the plateau may comprise the ancestral center of Tharsis tectonism (Frey, 1979; Plescia and Saunders, 1982). The ex

Geologic Maps of the Dardanus Sulcus (Jg-6), Misharu (Jg-10), Nabu (Jg-11), and Namtar (Jg-14) Quadrangles of Ganymede

Ganymede is the largest (~5,200 km diameter) of the Jovian satellites. Surficial features on Ganymede, as recorded by the Voyager 1 and 2 spacecraft (Smith and others, 1979a; 1979b), indicate a complex history of crustal formation. Several episodes of crustal modification led to the formation of curvilinear systems of furrows in dark terrain, the emplacement of light materials, and the creation of

Geologic Map of the Lavinia Planitia Quadrangle (V-55), Venus

Introduction The Lavinia Planitia quadrangle (V-55) is in the southern hemisphere of Venus and extends from 25 to 50 south latitude and from 330 to 360 longitude. It covers the central and northern part of Lavinia Planitia and parts of its margins. Lavinia Planitia consists of a centralized, deformed lowland flooded by volcanic deposits and surrounded by Dione Regio to the west (Keddie and Head

Geologic Map of the MTM-85000 Quadrangle, Planum Australe Region of Mars

Introduction The polar deposits on Mars probably record martian climate history over the last 107 to 109 years (for example, Thomas and others, 1992). The area shown on this map includes layered polar deposits and residual polar ice, as well as some exposures of older terrain. Howard and others (1982) noted that an area (at lat 84.8 S., long 356 W.) near a 23-km diameter impact crater (Plaut an

Geologic map of the Sappho Patera Quadrangle (V-20), Venus

The Sappho Patera quadrangle (V–20) of Venus is bounded by 0° and 30° East longitude, 0° and 25° North latitude. It is one of 62 quadrangles covering the entire planet at a scale of 1:5,000,000. The quadrangle derives its name from Sappho Patera, a large rimmed depression (diameter about 225 km) lying on top of a shield-shaped mountain named Irnini Mons. Sappho, a noted Greek poet born about 612 B

Geologic map of the Carson Quadrangle (V-43), Venus

The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the venusian atmosphere on October 12, 1994. Magellan had the objectives of (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis o