Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 1848

Accuracy of finite fault slip estimates in subduction zone regions with topographic Green's functions and seafloor geodesy

Until recently, the lack of seafloor geodetic instrumentation and the use of unrealistically simple, half-space based forward models have resulted in poor resolution of near-trench slip in subduction zone settings. Here, we use a synthetic framework to investigate the impact of topography and geodetic data distribution on coseismic slip estimates in various subduction zone settings. We calculate s
Authors
Leah Langer, Théa Ragon

Slip deficit rates on southern Cascadia faults resolved with viscoelastic earthquake cycle modeling of geodetic deformation

The fore‐arc of the southern Cascadia subduction zone (CSZ), north of the Mendocino triple junction (MTJ), is home to a network of Quaternary‐active crustal faults that accumulate strain due to the interaction of the North American, Juan de Fuca (Gorda), and Pacific plates. These faults, including the Little Salmon and Mad River fault (LSF and MRF) zones, are located near the most populated parts
Authors
Kathryn Zerbe Materna, Jessica R. Murray, Fred Pollitz, Jason R. Patton

A detailed view of the 2020-2023 southwestern Puerto Rico seismic sequence with deep learning

The 2020–2023 southwestern Puerto Rico seismic sequence, still ongoing in 2023, is remarkable for its multiple‐fault rupture complexity and elevated aftershock productivity. We applied an automatic workflow to continuous data from 43 seismic stations in Puerto Rico to build an enhanced earthquake catalog with ∼180,000 events for the 3+ yr sequence from 28 December 2019 to 1 January 2023. This work
Authors
Clara Yoon, Elizabeth S. Cochran, Elizabeth A. Vanacore, Victor Huerfano, Gisela Báez-Sánchez, John D. Wilding, Jonathan D. Smith

Witnessing history: Comparison of a century of sedimentary and written records in a California protected area

We use a combination of proxy records from a high-resolution analysis of sediments from Searsville Lake and adjacent Upper Lake Marsh and historical records to document over one and a half centuries of vegetation and socio-ecological change—relating to logging, agricultural land use change, dam construction, chemical applications, recreation, and other drivers—on the San Francisco Peninsula. A rel
Authors
R. Scott Anderson, M. Allison Stegner, SeanPaul La Selle, Brian L. Sherrod, Anthony D. Barnosky, Elizabeth A. Hadly

Comparison of nonergodic ground-motion components from CyberShake and NGA-West2 datasets in California

In this study, we compare the Southern California Earthquake Center CyberShake platform against the Next Generation Attenuation‐West2 empirical datasets. Because the CyberShake and empirical datasets cover very different magnitude ranges and site conditions, we develop ground‐motion models (GMMs) for CyberShake datasets to compare trends with empirical GMMs and decompose the residuals for further
Authors
Xiaofeng Meng, Christine Goulet, Kevin R. Milner, Robert Graves, Scott Callaghan

Quantification of geodetic strain rate uncertainties and implications for seismic hazard estimates

Geodetic velocity data provide first-order constraints on crustal surface strain rates, which in turn are linked to seismic hazard. Estimating the 2-D surface strain tensor everywhere requires knowledge of the surface velocity field everywhere, while geodetic data such as Global Navigation Satellite System (GNSS) only have spatially scattered measurements on the surface of the Earth. To use these
Authors
Jeremy Maurer, Kathryn Zerbe Materna

Chemical characterization of San Andreas Fault Observatory at Depth (SAFOD) Phase 3 core

We present new X-ray fluorescence compositions of 27 core samples from Phase 3, Hole G of the San Andreas Fault Observatory at Depth, nearly doubling the published dataset for the core. The new analyses consist of major and trace element compositions and the first published data for rare earth elements from Hole G. Whole-rock compositions were obtained to further the analysis of active geochemical
Authors
Diane E. Moore, Kelly K. Bradbury

Strength recovery in quartzite is controlled by changes in friction in experiments at hydrothermal conditions up to 200°C

The rate of fault zone restrengthening between earthquakes can be influenced by both frictional and cohesive healing processes. Friction is dependent on effective normal stress while cohesion is independent of normal stress, potentially explaining—in part—the lack of depth dependence of earthquake stress drops. Although amenable to laboratory testing, few studies have systematically addressed the
Authors
Tamara Nicole Jeppson, David A. Lockner, Nicholas M. Beeler, Stephen H. Hickman

Nonlinear radiation damping: A new method for dissipating energy in dynamic earthquake rupture simulations

Dynamic earthquake rupture simulations are used to understand earthquake mechanics and the ground shaking that earthquakes produce. These simulations can help diagnose past earthquake behavior and are also used to generate scenarios of possible future earthquakes. Traditional dynamic rupture models generally assume elastic rock response, but this can lead to peak on‐fault slip rates and ground sha
Authors
Michael Barall, Ruth A. Harris

Investigating spatio-temporal variability of initial 230Th/232Th in intertidal corals

One of the key factors in obtaining precise and accurate 230Th ages of corals, especially for corals with ages less than a few thousand years, is the correction for non-radiogenic 230Th based on an initial 230Th/232Th value (230Th/232Th0). Studies that consider coral 230Th/232Th0 values in intertidal environments are limited, and it is in these environments that corals have Th concentrations 100–1
Authors
Hong-Wei Chiang, Belle E. Philibosian, Aron J. Meltzner, Chung-Che Wu, Chuan-Chou Shen, R. Lawrence Edwards, Chih-Kai Chuang, Bambang W. Suwargadi, Danny H. Natawidjaja

60 years and beyond of Reviews of Geophysics

Reviews of Geophysics is an AGU journal, first established in February 1963. It is a hybrid open access invitation-only journal that publishes comprehensive review articles across various disciplines within the Earth and Space Sciences. The selection criteria are rigorous and many submissions are declined without review. The journal is the highest ranked in the fields of Geochemistry and Geophysic
Authors
Fabio Florindo, Valerio Acocella, Ann Marie Carlton, Paolo D’Odorico, Qingyun Duan, Andrew Gettelman, Jasper Halekas, Ruth A. Harris, Gesine Mollenhauer, Alan Robock, Claudine Stirling, Yusuke Yokoyama

Dense geophysical observations reveal a triggered, concurrent multi-fault rupture at the Mendocino Triple Junction

A central question of earthquake science is how far ruptures can jump from one fault to another, because cascading ruptures can increase the shaking of a seismic event. Earthquake science relies on earthquake catalogs and therefore how complex ruptures get documented and cataloged has important implications. Recent investments in geophysical instrumentation allow us to resolve increasingly complex
Authors
William L. Yeck, David R. Shelly, Dara Elyse Goldberg, Kathryn Zerbe Materna, Paul S. Earle