Geophysical Research and Development

Science Center Objects

The Geophysical Research and Development Project supported the development of new and existing geophysical techniques for addressing critical geological problems. Research conducted under this project included development of needed geophysical methods and software, development of new geophysical instrumentation, and applications of geophysical techniques to frontier areas of geology.

Science Issue and Relevance

Many projects within the U.S. Geological Survey (USGS) use geophysics as a tool for studying buried or concealed geologic features. The availability of modern geophysical instrumentation and data interpretation software is often critical to the success of these projects. However, most projects using geophysics lack the resources to evaluate, purchase, maintain, and provide training for geophysical equipment and software. In addition, the development of any new geophysical technology is a risky, long-term activity, that is well beyond the scope of most individual projects.

Methods to Address Issue

The Geophysical Research and Development Project ran from 1996 to 2012 and provided the geophysical equipment and software tools USGS projects needed. The Project strived to anticipate and develop new geophysical technologies that the Survey would need within the next several years and supported the development of new and existing geophysical techniques to address critical geological problems.

Research conducted under this project includes development of needed geophysical methods and software, development of new geophysical instrumentation, and applications of geophysical techniques to frontier areas of geology. 

Technologies supported and developed fell within the general categories of geoelectrical methods, potential-field methods, and gamma-ray methods. These methods permitted geophysical investigations at a broad range of scales from national and regional scales to local and site characterization scales, and at a range of depths from a few centimeters to tens of kilometers.

Supported geophysical methods include potential-field methods (gravity and magnetics), electrical methods (DC resistivity, induced polarization, and self-potential), electromagnetic methods (magnetotellurics (MT), ground penetrating radar (GPR), directional borehole radar, time-domain EM, and frequency-domain EM), shallow seismic methods (reflection, refraction, and surface-to-borehole), and gamma-ray geophysics.

 

Return to Mineral Resources Program | Geology, Geophysics, and Geochemistry Science Center