Skip to main content
U.S. flag

An official website of the United States government

Publications

The following is a list of our publications available from the USGS Publications Warehouse. If you cannot find what you are looking for, please contact our Public Information Officer, Tim Merrick, at trmerrick@usgs.gov or 208-387-1305.

Filter Total Items: 391

Evaluation of quality-control data collected by the U.S. Geological Survey for routine water-quality activities at the Idaho National Laboratory, Idaho, 1996–2001

The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collects surface water and groundwater samples at and near the Idaho National Laboratory as part of a routine, site-wide, water-quality monitoring program. Quality-control samples are collected as part of the program to ensure and document the quality of environmental data. From 1996 to 2001, quality-control samples con

The occurrence of trace elements in bed sediment collected from areas of varying land use and potential effects on stream macroinvertebrates in the conterminous western United States, Alaska, and Hawaii, 1992-2000

As part of the National Water-Quality Assessment Program of the U.S. Geological Survey, this study examines the occurrence of nine trace elements in bed sediment of varying mineralogy and land use and assesses the possible effects of these trace elements on aquatic-macroinvertebrate community structure. Samples of bed sediment and macroinvertebrates were collected from 154 streams at sites represe

Fluorite equilibria in thermal springs of the Snake River Basin, Idaho

Some thermal water sources of the Snake River basin, Idaho, are near saturation with respect to fluorite. That mineral was identified by X-ray diffraction in precipitates induced in three water samples by adding sodium fluoride. The derived solubility product (KS0) for zero ionic strength was close to that calculated from Latimer's thermodynamic data (10-9.7 7). The relative ease of precipitation

A progress report on results of test drilling and ground-water investigations of the Snake Plain aquifer, southeastern Idaho: Part 3: Lake Walcott-Bonanza Lake area

Direct-current resistivity soundings and exploratory drilling suggest that the basalt of the Snake River Group is relatively thin in the area along the Snake River that is topographically suitable for pumping large quantities of ground water in exchange for surface water. The formations underlying the Snake River Group appear to have low permeability and probably would not yield large amounts of w

Application of digital modeling to the prediction of radioisotope migration in ground water

Recently developed numerical techniques have been adapted to the solution of transient radioactive solute migration problems in groundwater.

Digital-model analysis of the effects of water-use alternatives on spring discharges Gooding and Jerome Counties, Idaho

Springs discharging from the Snake Plain aquifer contribute approximately 6,000 cubic feet per second (170 cubic metres per second) to flow in the Snake River between Milner and King Hill. Before irrigation began on the Snake River Plain north and east of the springs, total spring discharge was about 4,200 cubic feet per second (120 cubic meters per second). Increasing amounts of irrigated acreage

Multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2009–10

During 2009 and 2010, the U.S. Geological Survey’s Idaho National Laboratory Project Office, in cooperation with the U.S. Department of Energy, collected quarterly, depth-discrete measurements of fluid pressure and temperature in nine boreholes located in the eastern Snake River Plain aquifer. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measu

Numerical model simulations of nitrate concentrations in groundwater using various nitrogen input scenarios, mid-Snake region, south-central Idaho

As part of the U.S. Geological Survey’s National Water Quality Assessment (NAWQA) program nitrate transport in groundwater was modeled in the mid-Snake River region in south-central Idaho to project future concentrations of nitrate. Model simulation results indicated that nitrate concentrations would continue to increase over time, eventually exceeding the U.S. Environmental Protection Agency maxi

3-D reconstructions of subsurface Pleistocene basalt flows from paleomagnetic inclination data and <sup>40</sup>Ar/<sup>39</sup>Ar ages in the southern part of the Idaho National Laboratory (INL), Idaho (USA)

The U. S. Geological Survey, in cooperation with the U.S. Department of Energy, is mapping the distribution of basalt flows and sedimentary interbeds at the Idaho National Laboratory in three dimensions to provide data for refining numerical models of groundwater flow and contaminant transport in the eastern Snake River Plain aquifer. Paleomagnetic inclination and polarity data from basalt samples

Completion summary for borehole USGS 136 near the Advanced Test Reactor Complex, Idaho National Laboratory, Idaho

In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, cored and completed borehole USGS 136 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory. The borehole was initially cored to a depth of 1,048 feet (ft) below land surface (BLS) to collect core, open-borehole water

Soil analyses for 1,3-dichloropropene (1,3-DCP), sodium n-methyldithiocarbamate (metam-sodium), and their degradation products near Fort Hall Idaho, September 1999 through March 2000

Between September 1999 and March 2000, soil samples from the Fort Hall, Idaho, area were analyzed for two soil fumigants, 1,3-dichloropropene (1,3-DCP) and sodium n-methyldithiocarbamate (metam-sodium), and their degradation products. Ground water is the only source of drinking water at Fort Hall, and the purpose of the investigation was to determine potential risk of ground-water contamination fr