The Grand Canyon Monitoring and Research Center currently functions under a Triennial Work Plan (TWP) which is thoroughly reviewed and vetted both internally within the Center and through the GCDAMP Technical Work Group (TWG) and the Adaptive Management Work Group (AMWG). These advisory panels have been a part of the Glen Canyon Dam adaptive management process since the inception of the GCDAMP. For more information on the adaptive management process, please see the GCDAMP Page.
Physical Resources

GCMRC has on-going monitoring and research focused on river sediment dynamics, long-term monitoring of sediment resources in the Colorado River corridor, and understanding the connectivity of sand resources throughout the system.
Biological Resources

Several GCMRC projects focus on understanding the biological processes of the Colorado River, the effect of dam operations on both native and nonnative species, population dynamics of important species, and the terrestrial-biological interactions.
Socio-Economic and Cultural

GCMRC is also concerned with understanding the socio-economic values of the Colorado River in Grand Canyon, the unique recreational opportunites this environment offers and the cultural significance observed by the Tribal people of this the region.
Administrative History and Guidance That Informs GCMRC Projects
The work plan for fiscal years 2018 to 2020 (FY18-20 TWP) is compromised of eleven active science projects that align with the needs of the GCDAMP stakeholders. Each project described in the FY2018–20 TWP is organized around monitoring and research themes that are associated with the eleven resource goals identified in the LTEMP ROD: archaeological and cultural resources, natural processes, humpback chub, hydropower and energy, other native fish, recreational experience, sediment, tribal resources, rainbow trout fishery, nonnative invasive species, and riparian vegetation (U.S. Department of the Interior, 2016a; Attachment A).
The monitoring and research projects are responsive to guidance provided in the LTEMP ROD, which, in addition to identifying the priority resources, also identifies flow and non-flow experimental actions and compliance obligations for Glen Canyon Dam operations for the 20 years of the LTEMP. Additional guidance comes from the Science Plan developed by GCMRC (VanderKooi and others, 2017) in support of the LTEMP ROD which describes a general strategy for monitoring and research needed in support of implementation of operations and experimental actions.
Projects in the current TWP have been informed by and build upon previous research and monitoring projects that were responsive to guidance vetted through the GCDAMP and the Secretary of Interior’s office. While the LTEMP ROD defines broad resource goals and identifies new experimental actions and compliance requirements, some of the older guidance continues to have relevance for certain aspects of the current science program and continues to influence current research and monitoring directions in a general sense. Among this older guidance, the following documents describe the history of GCDAMP decisions and direction and help maintain continuity with GCDAMP goals as LTEMP is implemented:
- 2001 Glen Canyon Dam Adaptive Management Program draft strategic plan (Glen Canyon Dam Adaptive Management Program, 2001),
- 2007 Strategic Science Plan and Strategic Science Questions (SSQs) (U. S. Geological Survey, 2007),
- 2011 draft Core Monitoring Plan (U. S. Geological Survey, 2011), and
- 2012 AMWG Desired Future Conditions.
Monitoring and research themes described in these and other GCDAMP administrative documents have persisted throughout the life of the GCDAMP and are carried forward into the LTEMP. They include:
(1) recovery of the endangered humpback chub (Gila cypha) and maintenance of populations of other native fish;
(2) maintenance or improvement of the physical template, especially regarding fine sediment;
(3) maintenance of culturally important sites, especially those that are of archaeological and historical significance under the National Historic Preservation Act
(4) maintenance of the food base on which the native fish community depends;
(5) maintenance of a high-quality sport fishery in the Lees Ferry reach; and
(6) maintenance of the native riparian vegetation community.
The various goals, questions, information needs, and desired future conditions developed by GCDAMP committees also recognize the importance of maintaining high quality opportunities and conditions for recreational boaters and campers, and the role played by nonnative riparian vegetation in providing habitat for some desired fauna such as the endangered Southwestern willow flycatcher.
Below are science projects associated with GCMRC work plans.
Bat foraging ecology along the Colorado River in Grand Canyon
Smallmouth bass expansion downstream of Glen Canyon Dam
Population Dynamics of Threatened Humpback Chub in Grand Canyon
Bug Flows: Improving Food Web Health on the Colorado River
Airborne Remote Sensing in Grand Canyon
Is timing really everything? Evaluating Resource Response to Spring Disturbance Flows
River Sediment Dynamics
River Geomorphology and Geomorphic Change
Sediment Storage in Grand Canyon
River Campsites in Grand Canyon National Park
Geospatial Science and Technology
High-Flow Experiments on the Colorado River
Below are data associated with GCMRC-specific projects.
These data will be updated soon - in progress.
Colorado River Eddy Sandbar Dynamics Data
Riparian species vegetation classification data for the Colorado River within Grand Canyon derived from 2013 airborne imagery
Geomorphic Change-Sediment Transport Data for the Little Colorado River, Arizona, USA
Sand classifications along the Colorado River in Grand Canyon derived from 2002, 2009, and 2013 high-resolution multispectral airborne imagery
Below are publications associated with research and projects by the Grand Canyon Monitoring and Research Center (GCMRC). Note that not all of the publications listed here are funded under the Glen Canyon Dam Adaptive Management Program (GCDAMP).
To access all of SBSC's publications, click the link below.
Storms and pH of dam releases affect downstream phosphorus cycling in an arid regulated river
Models of underlying autotrophic biomass dynamics fit to daily river ecosystem productivity estimates improve understanding of ecosystem disturbance and resilience
The Colorado River water crisis: Its origin and the future
Linking ecosystem processes to consumer growth rates: Gross primary productivity as a driver of freshwater fish somatic growth in a resource-limited river
State of the science and decision support for measuring suspended sediment with acoustic instrumentation
Archaeological sites in Grand Canyon National Park along the Colorado River are eroding owing to six decades of Glen Canyon Dam operations
Colorado River Basin
Human factors used to estimate and forecast water supply and demand in the Upper Colorado River Basin
Assessment of potential recovery viability for Colorado Pikeminnow Ptychocheilus lucius in the Colorado River in Grand Canyon
Inland water greenhouse gas budgets for RECCAP2: 2. Regionalization and homogenization of estimates
Inland water greenhouse gas budgets for RECCAP2: 1. State-of-the-art of global scale assessments
Insectivorous bat foraging tracks the availability of aquatic flies (Diptera)
Predicted Shorelines for High Flows on the Colorado River Application
This application highlights modeled flows of the Colorado River for a discharge of 41,000 cubic feet per second (cfs) that is approximate to recent (2012 - 2018) and future anticipated water releases associated with a High Flow Experiments conducted from Glen Canyon Dam near Page, Arizona. These data are to help visualize the water levels during High Flow Events in relation to othe
APPLICATION - Discharge, Sediment, and Water Quality Monitoring Application
This link launches the Grand Canyon Monitoring and Research Center’s discharge, sediment and water quality monitoring application gateway. Sediment and water quality information can be accessed from here for our on-going monitoring taking place across the Southwest U.S.
APPLICATION - Grand Canyon Sandbar Monitoring
Several applications related to the Grand Canyon Monitoring and Research Center’s long-term sandbar monitoring project can be accessed here, including the sandbar area and volume tool and applications highlighting changes to sandbars as a result of High-Flow Events (HFEs) conducted by Glen Canyon Dam near Page, Arizona.
APPLICATION - Grand Canyon Aquatic Ecology Web Application
This application allows for the exploration of a select set of insect emergence data collected as part of a citizen science project initiated by the Grand Canyon Monitoring and Research Center (GCMRC). Data present in this application relate to a recent BioScience publication from USGS scientists and collaborators that investigated the effects of dam operations on downstream aquatic insects.
Below are news items about GCMRC's science.
- Overview
The Grand Canyon Monitoring and Research Center currently functions under a Triennial Work Plan (TWP) which is thoroughly reviewed and vetted both internally within the Center and through the GCDAMP Technical Work Group (TWG) and the Adaptive Management Work Group (AMWG). These advisory panels have been a part of the Glen Canyon Dam adaptive management process since the inception of the GCDAMP. For more information on the adaptive management process, please see the GCDAMP Page.
Physical ResourcesGCMRC has on-going monitoring and research focused on river sediment dynamics, long-term monitoring of sediment resources in the Colorado River corridor, and understanding the connectivity of sand resources throughout the system.
Biological ResourcesSeveral GCMRC projects focus on understanding the biological processes of the Colorado River, the effect of dam operations on both native and nonnative species, population dynamics of important species, and the terrestrial-biological interactions.
Socio-Economic and CulturalGCMRC is also concerned with understanding the socio-economic values of the Colorado River in Grand Canyon, the unique recreational opportunites this environment offers and the cultural significance observed by the Tribal people of this the region.
Administrative History and Guidance That Informs GCMRC Projects
The work plan for fiscal years 2018 to 2020 (FY18-20 TWP) is compromised of eleven active science projects that align with the needs of the GCDAMP stakeholders. Each project described in the FY2018–20 TWP is organized around monitoring and research themes that are associated with the eleven resource goals identified in the LTEMP ROD: archaeological and cultural resources, natural processes, humpback chub, hydropower and energy, other native fish, recreational experience, sediment, tribal resources, rainbow trout fishery, nonnative invasive species, and riparian vegetation (U.S. Department of the Interior, 2016a; Attachment A).
The monitoring and research projects are responsive to guidance provided in the LTEMP ROD, which, in addition to identifying the priority resources, also identifies flow and non-flow experimental actions and compliance obligations for Glen Canyon Dam operations for the 20 years of the LTEMP. Additional guidance comes from the Science Plan developed by GCMRC (VanderKooi and others, 2017) in support of the LTEMP ROD which describes a general strategy for monitoring and research needed in support of implementation of operations and experimental actions.
Projects in the current TWP have been informed by and build upon previous research and monitoring projects that were responsive to guidance vetted through the GCDAMP and the Secretary of Interior’s office. While the LTEMP ROD defines broad resource goals and identifies new experimental actions and compliance requirements, some of the older guidance continues to have relevance for certain aspects of the current science program and continues to influence current research and monitoring directions in a general sense. Among this older guidance, the following documents describe the history of GCDAMP decisions and direction and help maintain continuity with GCDAMP goals as LTEMP is implemented:
- 2001 Glen Canyon Dam Adaptive Management Program draft strategic plan (Glen Canyon Dam Adaptive Management Program, 2001),
- 2007 Strategic Science Plan and Strategic Science Questions (SSQs) (U. S. Geological Survey, 2007),
- 2011 draft Core Monitoring Plan (U. S. Geological Survey, 2011), and
- 2012 AMWG Desired Future Conditions.
Monitoring and research themes described in these and other GCDAMP administrative documents have persisted throughout the life of the GCDAMP and are carried forward into the LTEMP. They include:
(1) recovery of the endangered humpback chub (Gila cypha) and maintenance of populations of other native fish;
(2) maintenance or improvement of the physical template, especially regarding fine sediment;
(3) maintenance of culturally important sites, especially those that are of archaeological and historical significance under the National Historic Preservation Act
(4) maintenance of the food base on which the native fish community depends;
(5) maintenance of a high-quality sport fishery in the Lees Ferry reach; and
(6) maintenance of the native riparian vegetation community.
The various goals, questions, information needs, and desired future conditions developed by GCDAMP committees also recognize the importance of maintaining high quality opportunities and conditions for recreational boaters and campers, and the role played by nonnative riparian vegetation in providing habitat for some desired fauna such as the endangered Southwestern willow flycatcher.
- Science
Below are science projects associated with GCMRC work plans.
Filter Total Items: 23Bat foraging ecology along the Colorado River in Grand Canyon
Grand Canyon National Park is a hotspot for bat diversity. Twenty-two bat species have been documented in the Park, more than any other national park unit.Smallmouth bass expansion downstream of Glen Canyon Dam
In the Upper Colorado River Basin, smallmouth bass (Micropterus dolomieu) are considered the greatest threat to native fishes and have been linked to declines in federally protected humpback chub (Gila cypha), including one population that was rapidly extirpated in the past. Long-term management efforts have been underway to remove smallmouth bass from rivers in the Upper Basin, but smallmouth...Population Dynamics of Threatened Humpback Chub in Grand Canyon
The federally-listed threatened humpback chub is a native fish of the Colorado River. Despite the environmental changes to the river following the construction of Glen Canyon Dam, humpback chub persists alongside nonnative species, including rainbow trout. The pre-dam Colorado River experienced seasonal variation in temperature and discharge. Seasonal flooding resulted in sediments carried...Bug Flows: Improving Food Web Health on the Colorado River
Native and desired nonnative fish downstream of Glen Canyon Dam are food limited—meaning that if more or larger invertebrate food items were available, there would be more and larger fish. Aquatic insects have complex life cycles that include egg, larvae, and pupal stages that are aquatic while adults have wings and are typically terrestrial. Aquatic insects are a fundamental component of river...Airborne Remote Sensing in Grand Canyon
A high-resolution image collection in 2021 will be the most recent in a rich archive of aerial imagery that is used to track changes of the Colorado River in the Grand Canyon. Imagery will be acquired from an airplane in Grand Canyon National Park along the Colorado River corridor and the Little Colorado River starting Memorial Day weekend and continuing through the first week of June 2021. This...Is timing really everything? Evaluating Resource Response to Spring Disturbance Flows
Glen Canyon Dam has altered ecological processes of the Colorado River in Grand Canyon. Before the dam was built, the Colorado River experienced seasonable variable flow rates, including springtime flooding events. These spring floods scoured the river bottom and enhanced natural processes that sustained the Colorado River ecosystem. Since the dam’s construction in 1963, springtime floods have...River Sediment Dynamics
Sediment controls the physical habitat of river ecosystems. Changes in the amount and areal distribution of different sediment types cause changes in river-channel form and river habitat. The amount and type of sediment suspended in the water column determines water clarity. Understanding sediment transport and the conditions under which sediment is deposited or eroded from the various...River Geomorphology and Geomorphic Change
River channels and their adjacent floodplains are ever evolving in form and composition in response to changing patterns of streamflow, the quantity and size of supplied sediment, and feedbacks with the riparian and aquatic ecosystems. Changes in channel form affect aquatic and riparian habitats, which are important for plants, animals, and insects. Erosion and deposition of river channels and...Sediment Storage in Grand Canyon
The sandbars exposed along the shoreline of the Colorado River represent only a small fraction of the sand deposits in Grand Canyon, most of which are on the bed of the river in eddies and the channel. Current management practice includes efforts to maintain and build sandbars by releasing high flows from Glen Canyon Dam that are timed to coincide with periods of fine-sediment supply from...River Campsites in Grand Canyon National Park
Sandbars have been used as campsites by river runners and hikers since the first expeditions to the region more than 100 years ago. Sandbar campsites continue to be an important part of the recreational experience for the more than 25,000 hikers and river runners that visit the Colorado River corridor each year. Because the Colorado River is dominated by bedrock cliffs and steep talus slopes...Geospatial Science and Technology
The U.S. Geological Survey’s Southwest Biological Science Center, and more specifically, its River Ecosystem Science branch which includes the Grand Canyon Monitoring and Research Center (GCMRC), is a preeminent science group that has more than 20 years of experience of providing high-quality, detailed science to resource managers and stakeholders primarily concerned with the effects of dam...High-Flow Experiments on the Colorado River
Glen Canyon Dam has altered flow and fine sediment (sand, silt, and clay) dynamics of the Colorado River in Grand Canyon. Before the dam, the Colorado River experienced highly variable flows and carried a large amount of sediment through Grand Canyon, which maintained sandbars (highly valued camping areas in Grand Canyon) and provided sand that protected archeological and cultural sites from... - Data
Below are data associated with GCMRC-specific projects.
These data will be updated soon - in progress.
Colorado River Eddy Sandbar Dynamics Data
These data are a compilation of the characteristics of eddy sandbars, eddy sandbar areas and volumes measured between 1990 and 2015, and longitudinal metrics of the Colorado River in Grand Canyon National Park, Arizona. These data were used to evaluate the response of sandbars to controlled floods implemented in 1996, 2004, 2008, 2012, 2013, and 2014. These data were also used to characterize theRiparian species vegetation classification data for the Colorado River within Grand Canyon derived from 2013 airborne imagery
These data are a species-level classification map of riparian vegetation in the Colorado River riparian corridor in Grand Canyon, Arizona, USA. The classification is derived from 0.2 m pixel resolution multispectral aerial imagery acquired in May 2013. The classification spans the riparian zone of the river corridor between Glen Canyon Dam near Page, Arizona, and Lake Mead at Pearce Ferry, ArizonaGeomorphic Change-Sediment Transport Data for the Little Colorado River, Arizona, USA
These data were compiled to accompany flow modeling work on Little Colorado river above the mouth (USGS gage 09402300). The data include topographic data collected by LIDAR and total station in June 2017, high water marks from nine historic floods, and control points and gage structures. Topographic data include ground topography collected by LIDAR and channel bathymetry collected by total stationSand classifications along the Colorado River in Grand Canyon derived from 2002, 2009, and 2013 high-resolution multispectral airborne imagery
These data are remote sensing image-based classification maps of unvegetated river-derived sand along the Colorado River. One map is based on imagery acquired in May 2013 and is a classification of sand located above the wetted river channel in the imagery which was acquired at the approximate contemporary low-flow river discharge of 8,000 cubic feet per second (227 cubic meters per second) and ex - Multimedia
- Publications
Below are publications associated with research and projects by the Grand Canyon Monitoring and Research Center (GCMRC). Note that not all of the publications listed here are funded under the Glen Canyon Dam Adaptive Management Program (GCDAMP).
To access all of SBSC's publications, click the link below.
Filter Total Items: 313Storms and pH of dam releases affect downstream phosphorus cycling in an arid regulated river
Reservoirs often bury phosphorus (P), leading to seasonal or persistent reductions in P supply to downstream rivers. Here we ask if observed variation in the chemistry of dam release waters stimulates downstream sediment P release and biological activity in an arid, oligotrophic system, the Colorado River below Lake Powell, Arizona, USA. We use bottle incubations to simulate a range of observed pHAuthorsBridget Deemer, Robin H. Reibold, Anna Fatta, Jessica R. Corman, Charles Yackulic, Sasha C. ReedModels of underlying autotrophic biomass dynamics fit to daily river ecosystem productivity estimates improve understanding of ecosystem disturbance and resilience
Directly observing autotrophic biomass at ecologically relevant frequencies is difficult in many ecosystems, hampering our ability to predict productivity through time. Since disturbances can impart distinct reductions in river productivity through time by modifying underlying standing stocks of biomass, mechanistic models fit to productivity time series can infer underlying biomass dynamics. We iAuthorsJoanna R. Blaszczak, Charles Yackulic, Robert K. Shriver, Jr. HallThe Colorado River water crisis: Its origin and the future
During much of the 21st century, natural runoff in the Colorado River basin has declined, while consumption has remained relatively constant, leading to historically low reservoir storage. Between January 2000 and April 2023, the amount of water stored in Lake Mead and Lake Powell, the two largest reservoirs in the United States, declined by 33.5 million acre feet (41.3 billion cubic meters). As oAuthorsJohn C. Schmidt, Charles Yackulic, Eric KuhnLinking ecosystem processes to consumer growth rates: Gross primary productivity as a driver of freshwater fish somatic growth in a resource-limited river
Individual growth can exert strong controls on population dynamics and be constrained by resource acquisition rates. Difficulty in accurately quantifying resource availability over large spatial extents and at high temporal frequency often limits attempts to understand the extent that resources limit individual growth. Daily estimates of stream metabolism, including gross primary productivity (GPPAuthorsLindsay Erika Hansen, Charles Yackulic, Brett G. Dickson, Bridget Deemer, Rebecca J. BestState of the science and decision support for measuring suspended sediment with acoustic instrumentation
Acoustic instrumentation can be used to provide time-series and discrete estimates of suspended-sediment concentration, load, and sediment particle sizes in fluvial systems, which are essential for creating informed solutions to many sediment-related environmental, engineering, and land management concerns. Historically, scientists have developed relations between suspended sediment characteristicAuthorsMolly S. Wood, Joel T. Groten, Timothy D. Straub, Dan R.W. Haught, Ronald E. Griffiths, Justin A. Boldt, Zulimar Lucena, Jeb E. Brown, Steven E. Suttles, Patrick J. DickhudtArchaeological sites in Grand Canyon National Park along the Colorado River are eroding owing to six decades of Glen Canyon Dam operations
The archaeological record documenting human history in deserts is commonly concentrated along rivers in terraces or other landforms built by river sediment deposits. Today that record is at risk in many river valleys owing to human resource and infrastructure development activities, including the construction and operation of dams. We assessed the effects of the operations of Glen Canyon Dam – whiAuthorsJoel B. Sankey, Amy E. East, Helen C. Fairley, Joshua Caster, Jennifer Dierker, Ellen Brennan, Lonnie Pilkington, Nathaniel Dylan Bransky, Alan KasprakColorado River Basin
The Colorado River is often referred to as “the lifeblood of the west.” The basin supplies municipal water to nearly 40 million people and irrigates approximately 22,000 km2 of agricultural lands. Twenty-two major rivers converge with the Colorado after it begins its descent from the Rocky Mountains and winds through the plateaus of Colorado, Utah, and Arizona, onto the deserts of southwestern AriAuthorsAnya Metcalfe, Jeffrey Muehlbauer, Morgan Ford, Theodore KennedyHuman factors used to estimate and forecast water supply and demand in the Upper Colorado River Basin
Water availability is a result of complex interactions between regional water supply and demand and underlying environmental, institutional, and economic determinants. For this study, water availability is defined as “access to a specific quantity and quality of water at a point in time and space, for a specific use, recognizing the social and economic value of water across uses and institutions tAuthorsNicole M. Herman-Mercer, Lucas Bair, Megan Hines, Diana Restrepo-Osorio, Veronica Romero, Aidan LydeAssessment of potential recovery viability for Colorado Pikeminnow Ptychocheilus lucius in the Colorado River in Grand Canyon
Colorado Pikeminnow Ptychocheilus lucius, the Colorado River’s top native predatory fish, was historically distributed from the Gulf of California delta to the upper reaches of the Green, Colorado, and San Juan rivers in the Colorado River basin in the Southwestern US. In recent decades Colorado Pikeminnow population abundance has declined, primarily due to predation by warmwater nonnative fish anAuthorsKimberly L. Dibble, Charles Yackulic, Kevin R. Bestgen, Keith B. Gido, Tildon Jones, Mark McKinstry, Doug Osmundson, Dale Ryden, Robert C. SchellyInland water greenhouse gas budgets for RECCAP2: 2. Regionalization and homogenization of estimates
Inland waters are important sources of the greenhouse gasses (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) to the atmosphere. In the framework of the 2nd phase of the REgional Carbon Cycle Assessment and Processes (RECCAP-2) initiative, we synthesize existing estimates of GHG emissions from streams, rivers, lakes and reservoirs, and homogenize them with regard to underlying glAuthorsRonny Lauerwald, George H. Allen, Bridget Deemer, Shaoda Liu, Taylor Maavara, Peter Raymond, Lewis Alcott, David Bastviken, Adam Hastie, Meredith A. Holgerson, Matthew S. Johnson, Bernhard Lehner, Peirong Lin, Alessandra Marzadri, Lishan Ran, Hanqin Tian, Xiao Yang, Yuanzhi Yao, Pierre RegnierInland water greenhouse gas budgets for RECCAP2: 1. State-of-the-art of global scale assessments
Inland waters are important sources of the greenhouse gasses (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) to the atmosphere. In the framework of the 2nd phase of the REgional Carbon Cycle Assessment and Processes (RECCAP-2) initiative, we review the state of the art in estimating inland water GHG budgets at global scale, which has substantially advanced since the first phaseAuthorsRonny Lauerwald, George H. Allen, Bridget Deemer, Shaoda Liu, Taylor Maavara, Peter Raymond, Lewis Alcott, David Bastviken, Adam Hastie, Meredith A. Holgerson, Matthew S. Johnson, Bernhard Lehner, Peirong Lin, Alessandra Marzadri, Lishan Ran, Hanqin Tian, Xiao Yang, Yuanzhi Yao, Pierre RegnierInsectivorous bat foraging tracks the availability of aquatic flies (Diptera)
Rivers and their adjacent riparian zones are model ecosystems for observing cross-ecosystem energy transfers. Aquatic insects emerging from streams, for example, are resource subsidies that support riparian consumers such as birds, spiders, lizards, and bats. We collaborated with recreational river runners in Grand Canyon, Arizona, USA, to record acoustic bat activity and sample riparian insects uAuthorsAnya Metcalfe, Carol Fritzinger, Theodore J. Weller, Michael Dodrill, Jeffrey Muehlbauer, Charles Yackulic, Brandon P. Holton, Cheyenne Maxime Szydlo, Laura E. Durning, Joel B. Sankey, Theodore Kennedy - Web Tools
Predicted Shorelines for High Flows on the Colorado River Application
This application highlights modeled flows of the Colorado River for a discharge of 41,000 cubic feet per second (cfs) that is approximate to recent (2012 - 2018) and future anticipated water releases associated with a High Flow Experiments conducted from Glen Canyon Dam near Page, Arizona. These data are to help visualize the water levels during High Flow Events in relation to othe
APPLICATION - Discharge, Sediment, and Water Quality Monitoring Application
This link launches the Grand Canyon Monitoring and Research Center’s discharge, sediment and water quality monitoring application gateway. Sediment and water quality information can be accessed from here for our on-going monitoring taking place across the Southwest U.S.
APPLICATION - Grand Canyon Sandbar Monitoring
Several applications related to the Grand Canyon Monitoring and Research Center’s long-term sandbar monitoring project can be accessed here, including the sandbar area and volume tool and applications highlighting changes to sandbars as a result of High-Flow Events (HFEs) conducted by Glen Canyon Dam near Page, Arizona.
APPLICATION - Grand Canyon Aquatic Ecology Web Application
This application allows for the exploration of a select set of insect emergence data collected as part of a citizen science project initiated by the Grand Canyon Monitoring and Research Center (GCMRC). Data present in this application relate to a recent BioScience publication from USGS scientists and collaborators that investigated the effects of dam operations on downstream aquatic insects.
- News
Below are news items about GCMRC's science.