St. Petersburg Coastal and Marine Science Center

Data and Tools

Filter Total Items: 552
Date published: March 17, 2017

FIIS_Breach_Shorelines.shp - Fire Island National Seashore Wilderness Breach Shoreline Data Collected from Fire Island, New York, October 2014 to September 2016

Hurricane Sandy made U.S. landfall, coincident with astronomical high tides, near Atlantic City, New Jersey, on October 29, 2012. The storm, the largest on historical record in the Atlantic basin, affected an extensive area of the east coast of the United States. The highest waves and storm surge were focused along the heavily populated New York and New Jersey coasts. At the height

Date published: March 17, 2017

Shorelines_Oct2012_Sep2016.shp: Fire Island, NY pre and post storm shoreline data from October 2012 to September 2016

Hurricane Sandy made U.S. landfall, coincident with astronomical high tides, near Atlantic City, New Jersey, on October 29, 2012. The storm, the largest on historical record in the Atlantic basin, affected an extensive area of the east coast of the United States. The highest waves and storm surge were focused along the heavily populated New York and New Jersey coasts. At the height

Date published: March 8, 2017

Archive of Sediment Data Collected in 2014 and 2015 From Around Breton and Gosier Islands, Breton National Wildlife Refuge, Louisiana

This data release serves as an archive of sediment data from vibracores, push cores, and submerged grab samples collected from around Breton and Gosier Islands, Louisiana, during two surveys in July 2014 and January 2015 (USGS Field Activity Numbers [FAN] 2014–314–FA [alternate FAN 14BIM04] and 2014–336–FA, respectively). Sedimentologic and stratigraphic metrics (for example, sediment texture...

Date published: March 8, 2017

Lower Florida Keys-Seafloor elevation change in Maui, St. Croix, St. Thomas, and the Florida Keys

Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves and erosion but projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to

Date published: March 8, 2017

Upper Florida Keys-Seafloor elevation change in Maui, St. Croix, St. Thomas, and the Florida Keys

Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves and erosion but projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to

Date published: March 8, 2017

Maui, Hawaii-Seafloor elevation change in Maui, St. Croix, St. Thomas, and the Florida Keys

Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves and erosion but projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to

Date published: March 8, 2017

St. Thomas, U.S. Virgin Islands-Seafloor elevation change in Maui, St. Croix, St. Thomas, and the Florida Keys

Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves and erosion but projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to

Date published: March 8, 2017

St. Croix, U.S. Virgin Islands—Seafloor elevation change in Maui, St. Croix, St. Thomas, and the Florida Keys

Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves and erosion but projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to

Date published: February 17, 2017

Acidification and Increasing CO2 Flux Associated with Five, Springs Coast, Florida Springs (1991-2014)

Scientists from the South West Florida Management District (SWFWMD) acquired and analyzed over 20 years of seasonally-sampled hydrochemical data from five first-order-magnitude (springs that discharge 2.83 m3 s-1 or more) coastal springs located in west-central Florida. These data were subsequently obtained by the U.S. Geological Survey (USGS) for further analyses and interpretation.

Date published: February 16, 2017

Storm-Impact Scenario XBeach Model Results – Scenario 6 Digital Elevation Model (DEM) Grid

The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Ro

Date published: February 16, 2017

Storm-Impact Scenario XBeach Model Results – Scenario 8 Digital Elevation Model (DEM) Grid

The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Ro

Date published: February 16, 2017

Storm-Impact Scenario XBeach Model Results – Scenario 12 Digital Elevation Model (DEM) Grid

The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Ro