This time-lapse video shows lateral erosion of a salt marsh in the Grand Bay National Estuarine Research Reserve, part of an embayment near the city of Pascagoula, Mississippi, on the US Gulf coast. Wave action over the course of 6.5 months led to about 1.5 meters of erosion.
Estuarine Processes Eutrophication
Macroalgae, seagrass, and litter in West Falmouth Harbor, MA
Increased loadings of nutrients to estuaries have altered ecosystem function by encouraging growth of phytoplankton and macroalgae while inducing large swings in dissolved oxygen and threatening the sustainability of seagrass meadows. We are measuring and modeling these processes to understand the future trajectory of estuarine ecosystems.
The past several decades have seen a massive increase in eutrophication of estuaries globally, leading to widespread hypoxia and anoxia, habitat degradation, alteration of food web structure, loss of biodiversity, and increased frequency, spatial extent, and duration of harmful algal blooms. A majority of estuaries in the USA are degraded as a result. Shallow seagrass dominated lagoons appear to be particularly sensitive. In many of these ecosystems, endemic species such as seagrass are lost as benthic algae and phytoplankton dominate under increased nutrient supply.
Our research of eutrophication began with developing methods to estimate nutrient loading from groundwater. Those methods integrated continuous monitoring as well as numerical modeling. Monitoring of nitrogen levels, salinity, chlorophyll, dissolved oxygen, and light attenuation have led to a better understanding of the mechanisms and timescales of eutrophication. We have now begun enhancing biogeochemical models to represent estuarine processes such as hypoxia, benthic fluxes, and seagrass kinetics. These models can then be used to simulate future scenarios of nutrient loading and sea-level rise, while also exploring biophysical feedbacks such as decreased sediment resuspension due to increased seagrass biomass.
Below are multimedia items associated with this project.
This time-lapse video shows lateral erosion of a salt marsh in the Grand Bay National Estuarine Research Reserve, part of an embayment near the city of Pascagoula, Mississippi, on the US Gulf coast. Wave action over the course of 6.5 months led to about 1.5 meters of erosion.
Below are publications associated with this project.
Estimating time-dependent connectivity in marine systems
Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation
Quantifying the residence time and flushing characteristics of a shallow, back-barrier estuary: Application of hydrodynamic and particle tracking models
Modeling future scenarios of light attenuation and potential seagrass success in a eutrophic estuary
Physical and biogeochemical controls on light attenuation in a eutrophic, back-barrier estuary
Tidal and groundwater fluxes to a shallow, microtidal estuary: Constraining inputs through field observations and hydrodynamic modeling
A novel approach for direct estimation of fresh groundwater discharge to an estuary
Increased loadings of nutrients to estuaries have altered ecosystem function by encouraging growth of phytoplankton and macroalgae while inducing large swings in dissolved oxygen and threatening the sustainability of seagrass meadows. We are measuring and modeling these processes to understand the future trajectory of estuarine ecosystems.
The past several decades have seen a massive increase in eutrophication of estuaries globally, leading to widespread hypoxia and anoxia, habitat degradation, alteration of food web structure, loss of biodiversity, and increased frequency, spatial extent, and duration of harmful algal blooms. A majority of estuaries in the USA are degraded as a result. Shallow seagrass dominated lagoons appear to be particularly sensitive. In many of these ecosystems, endemic species such as seagrass are lost as benthic algae and phytoplankton dominate under increased nutrient supply.
Our research of eutrophication began with developing methods to estimate nutrient loading from groundwater. Those methods integrated continuous monitoring as well as numerical modeling. Monitoring of nitrogen levels, salinity, chlorophyll, dissolved oxygen, and light attenuation have led to a better understanding of the mechanisms and timescales of eutrophication. We have now begun enhancing biogeochemical models to represent estuarine processes such as hypoxia, benthic fluxes, and seagrass kinetics. These models can then be used to simulate future scenarios of nutrient loading and sea-level rise, while also exploring biophysical feedbacks such as decreased sediment resuspension due to increased seagrass biomass.
Below are multimedia items associated with this project.
This time-lapse video shows lateral erosion of a salt marsh in the Grand Bay National Estuarine Research Reserve, part of an embayment near the city of Pascagoula, Mississippi, on the US Gulf coast. Wave action over the course of 6.5 months led to about 1.5 meters of erosion.
This time-lapse video shows lateral erosion of a salt marsh in the Grand Bay National Estuarine Research Reserve, part of an embayment near the city of Pascagoula, Mississippi, on the US Gulf coast. Wave action over the course of 6.5 months led to about 1.5 meters of erosion.
Below are publications associated with this project.