Skip to main content
U.S. flag

An official website of the United States government

Geochemical data supporting investigation of solute and particle cycling and fluxes from two tidal wetlands on the south shore of Cape Cod, Massachusetts, 2012-19

February 17, 2021

Assessment of geochemical cycling within tidal wetlands and measurement of fluxes of dissolved and particulate constituents between wetlands and coastal water bodies are critical to evaluating ecosystem function, service, and status. The U.S. Geological Survey and collaborators collected surface water and porewater geochemical data from a tidal wetland located on the eastern shore of Sage Lot Pond in Mashpee, Massachusetts, within the Waquoit Bay National Estuarine Research Reserve, between 2012 and 2019. Additional porewater geochemical and field data from a tidal wetland on the eastern shore of Great Pond in East Falmouth, MA are also included. These data can be used to evaluate biogeochemical conditions and cycling of carbon and other elements within the marsh platform and to calculate lateral tidal exchange fluxes of a suite of dissolved and particulate constituents between the wetland and estuary. Analytes include but are not limited to: dissolved oxygen, oxidation reduction potential, pH, salinity, dissolved and particulate organic and inorganic carbon, stable carbon isotopic ratios, nitrogen species, phosphate, silica, dissolved methane and nitrous oxide gas, trace elements, radium isotopes, alkalinity, and sulfide. Much of the surface water data at Sage Lot Pond was collected from the mouth of a tidal creek across full-tidal (12 to 14 hour) time series sampling events at 0.5 to 2-hour intervals at different points in the spring/ neap cycle and season. Porewater samples were collected at multiple depths (9 to 245 centimeters) in transects extending across the marsh platform at different times in the season between 2014 and 2019. Sage Lot Pond creek data are concurrent with extended time-series measurement of water quality and flow data measured with deployed sensors in the tidal creek (Mann and others, 2019), and with carbonate chemistry data measured at the site (Wang and others, 2019, 2020).