Thomas W Brooks
Wally Brooks is a Physical Scientist with the Environmental Geoscience Project at the Woods Hole Coastal and Marine Science Center.
Science and Products
Environmental Geochemistry
Coastal Environmental Geochemistry research at the Woods Hole Coastal and Marine Science Center spans multiple ecosystems and topics, including coastal wetlands, aquifers, and estuaries, with the goal of providing data and guidance to federal, state, local, and private land owners and managers on these vital ecosystems.
Geochemical Data Supporting Analysis of Fate and Transport of Nitrogen in the Nearshore Groundwater and Subterranean Estuary near East Falmouth, Massachusetts, 2015-2016
Geochemical data were obtained to investigate the fate and transport of nitrogen in a subterranean estuary near East Falmouth, Massachusetts. The goal of this investigation was to assess nitrogen attenuation in the aquifer under the Eel River estuary and the adjacent peninsula, introduced as inorganic nitrogen that was densely populated with residences havingfrom residential septic...
Nearshore groundwater seepage and geochemical data measured in 2015 at Guinea Creek, Rehoboth Bay, Delaware
Assessment of biogeochemical processes and transformations at the aquifer-estuary interface and measurement of the chemical flux from submarine groundwater discharge (SGD) zones to coastal water bodies are critical for evaluating ecosystem service, geochemical budgets, and eutrophication status. The U.S. Geological Survey and the University of Delaware measured rates of SGD and...
Carbon dioxide and methane fluxes with supporting environmental data from coastal wetlands across Cape Cod, Massachusetts (ver 2.0, June 2022)
Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted vast areas of coastal wetlands to tidal exchange. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion...
Continuous Water Level, Salinity, and Temperature Data from Coastal Wetland Monitoring Wells, Cape Cod, Massachusetts (ver. 2.0, August 2022)
Environmental parameters affecting plant productivity and microbial respiration, such as water level, salinity, and groundwater temperature included in these datasets, are key components of wetland carbon cycling, carbon storage, and capacity to maintain elevation. Data were collected to (1) provide background data to evaluate potential differences in water level and carbon flux between...
Geochemical data supporting analysis of fate and transport of nitrogen in the near shore groundwater and subterranean estuary near East Falmouth, Massachusetts, 2015
Geochemical data were obtained to investigate the fate and transport of nitrogen in a subterranean estuary near East Falmouth, Massachusetts. The goal of this investigation was to assess nitrogen attenuation in the aquifer under the Eel River Estuary and the adjacent peninsula that was densely populated with residences having septic systems and legacy cesspool inputs of inorganic...
Geochemical data supporting investigation of solute and particle cycling and fluxes from two tidal wetlands on the south shore of Cape Cod, Massachusetts, 2012-19 (ver. 2.0, October 2022)
Assessment of geochemical cycling within tidal wetlands and measurement of fluxes of dissolved and particulate constituents between wetlands and coastal water bodies are critical to evaluating ecosystem function, service, and status. The U.S. Geological Survey and collaborators collected surface water and porewater geochemical data from a tidal wetland located on the eastern shore of...
Continuous Monitoring Data From Herring River Wetlands Cape Cod, Massachusetts, 2015-Jan2020
The Herring River estuary (Wellfleet, Cape Cod, Massachusetts) has been tidally restricted for over a century by a dike constructed near the mouth of the river. Behind the dike, the tidal restriction has caused the conversion of salt marsh wetlands to various other ecosystems including impounded freshwater marshes, flooded shrub land, drained forested upland, and wetlands dominated by...
Continuous Monitoring Data From Great Barnstable Marsh on Cape Cod, Massachusetts, 2017-19
Salt marshes are environmental ecosystems that contribute to coastal landscape resiliency to storms and rising sea level. Ninety percent of mid-Atlantic and New England salt marshes have been impacted by parallel grid ditching that began in the 1920s–40s to control mosquito populations and to provide employment opportunities during the Great Depression (James-Pirri and others, 2009...
Time-series of biogeochemical and flow data from a tidal salt-marsh creek, Sage Lot Pond, Waquoit Bay, Massachusetts, 2012-2016 (ver. 2.0, July 2023)
Extended time-series sensor data were collected between 2012 and 2016 in surface water of a tidal salt-marsh creek on Cape Cod, Massachusetts. The objective of this field study was to measure water chemical characteristics and flows, as part of a study to quantify lateral fluxes of dissolved carbon species between the salt marsh and estuary. Data consist of in-situ measurements including...
Geochemical data supporting analysis of geochemical conditions and nitrogen transport in nearshore groundwater and the subterranean estuary at a Cape Cod embayment, East Falmouth, Massachusetts
This data release provides analytical and other data in support of an analysis of nitrogen transport and transformation in groundwater and in a subterranean estuary in the Eel River and onshore locations on the Seacoast Shores peninsula, Falmouth, Massachusetts. The analysis is described in U.S. Geological Survey Scientific Investigations Report 2018-5095 by Colman and others (2018)...
Coastal Groundwater Chemical Data from the North and South Shores of Long Island, New York
Groundwater data were collected in the spring and fall of 2008 from three sites representing different geological settings and biogeochemical conditions within the surficial glacial aquifer of Long Island, NY. Investigations were designed to examine the extent to which average vadose zone thickness in contributing watersheds controlled biogeochemical conditions and processes, including...
Evidence of nitrate attenuation in intertidal and subtidal groundwater in a subterranean estuary at a Cape Cod embayment, East Falmouth, Massachusetts, 2015–16
Nitrogen dynamics in intertidal and nearshore subtidal groundwater (subterranean estuary) adjacent to the Seacoast Shores peninsula, Falmouth, Massachusetts, were investigated during 2015–16 by the U.S. Geological Survey. The peninsula is a densely populated residential area with septic systems and cesspools that are substantial sources of nitrogen to groundwater. The study area is in...
Authors
Thomas G. Huntington, Kevin D. Kroeger, Timothy D. McCobb, J.K. Böhlke, John A. Colman, Thomas W. Brooks, Beata Syzmczycha
Impoundment increases methane emissions in Phragmites-invaded coastal wetlands
Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted tidal exchange in vast areas of coastal wetlands. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion...
Authors
Rebecca Sanders-DeMott, Meagan J. Eagle, Kevin D. Kroeger, Faming Wang, Thomas W. Brooks, Jennifer A. O'Keefe Suttles, Sydney K. Nick, Adrian G. Mann, Jianwu Tang
Oxygen-controlled recirculating seepage meter reveals extent of nitrogen transformation in discharging coastal groundwater at the aquifer–estuary interface
Nutrient loads delivered to estuaries via submarine groundwater discharge (SGD) play an important role in the nitrogen (N) budget and eutrophication status. However, accurate and reliable quantification of the chemical flux across the final decimeters and centimeters at the sediment–estuary interface remains a challenge, because there is significant potential for biogeochemical...
Authors
Thomas W. Brooks, Kevin D. Kroeger, Holly A. Michael, Joanna K. York
Substantial nitrous oxide emissions from intertidal sediments and groundwater in anthropogenically-impacted West Falmouth Harbor, Massachusetts
Large N2O emissions were observed from intertidal sediments in a coastal estuary, West Falmouth Harbor, MA, USA. Average N2O emission rates from 41 chambers during summer 2008 were 10.7 mol N2O m(-2) h(-1)±4.43 μmol N2O m(-2) h(-1) (standard error). Emissions were highest from sediments within a known wastewater plume, where a maximum N2O emission rate was 155 μmol N2O m(-2) h(-1)...
Authors
Serena Moseman-Valtierra, Kevin D. Kroeger, John Crusius, Sandy Baldwin, Adrian G. Mann, Thomas W. Brooks, E. Pugh
Summary of oceanographic and water-quality measurements near the Blackwater National Wildlife Refuge, Maryland, 2011
Suspended-sediment transport is a critical element governing the geomorphology of tidal marshes. Marshes rely on both organic material and inorganic sediment deposition to maintain their elevation relative to sea level. In wetlands near the Blackwater National Wildlife Refuge, Maryland, portions of the salt marsh have been subsiding relative to sea level since the early 20th century...
Authors
Neil K. Ganju, Patrick J. Dickhudt, Ellyn T. Montgomery, Patrick Brennand, R. Kyle Derby, Thomas W. Brooks, Glenn R. Guntenspergen, Marinna A. Martini, Jonathan Borden, Sandra M. Baldwin
Science and Products
Environmental Geochemistry
Coastal Environmental Geochemistry research at the Woods Hole Coastal and Marine Science Center spans multiple ecosystems and topics, including coastal wetlands, aquifers, and estuaries, with the goal of providing data and guidance to federal, state, local, and private land owners and managers on these vital ecosystems.
Geochemical Data Supporting Analysis of Fate and Transport of Nitrogen in the Nearshore Groundwater and Subterranean Estuary near East Falmouth, Massachusetts, 2015-2016
Geochemical data were obtained to investigate the fate and transport of nitrogen in a subterranean estuary near East Falmouth, Massachusetts. The goal of this investigation was to assess nitrogen attenuation in the aquifer under the Eel River estuary and the adjacent peninsula, introduced as inorganic nitrogen that was densely populated with residences havingfrom residential septic...
Nearshore groundwater seepage and geochemical data measured in 2015 at Guinea Creek, Rehoboth Bay, Delaware
Assessment of biogeochemical processes and transformations at the aquifer-estuary interface and measurement of the chemical flux from submarine groundwater discharge (SGD) zones to coastal water bodies are critical for evaluating ecosystem service, geochemical budgets, and eutrophication status. The U.S. Geological Survey and the University of Delaware measured rates of SGD and...
Carbon dioxide and methane fluxes with supporting environmental data from coastal wetlands across Cape Cod, Massachusetts (ver 2.0, June 2022)
Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted vast areas of coastal wetlands to tidal exchange. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion...
Continuous Water Level, Salinity, and Temperature Data from Coastal Wetland Monitoring Wells, Cape Cod, Massachusetts (ver. 2.0, August 2022)
Environmental parameters affecting plant productivity and microbial respiration, such as water level, salinity, and groundwater temperature included in these datasets, are key components of wetland carbon cycling, carbon storage, and capacity to maintain elevation. Data were collected to (1) provide background data to evaluate potential differences in water level and carbon flux between...
Geochemical data supporting analysis of fate and transport of nitrogen in the near shore groundwater and subterranean estuary near East Falmouth, Massachusetts, 2015
Geochemical data were obtained to investigate the fate and transport of nitrogen in a subterranean estuary near East Falmouth, Massachusetts. The goal of this investigation was to assess nitrogen attenuation in the aquifer under the Eel River Estuary and the adjacent peninsula that was densely populated with residences having septic systems and legacy cesspool inputs of inorganic...
Geochemical data supporting investigation of solute and particle cycling and fluxes from two tidal wetlands on the south shore of Cape Cod, Massachusetts, 2012-19 (ver. 2.0, October 2022)
Assessment of geochemical cycling within tidal wetlands and measurement of fluxes of dissolved and particulate constituents between wetlands and coastal water bodies are critical to evaluating ecosystem function, service, and status. The U.S. Geological Survey and collaborators collected surface water and porewater geochemical data from a tidal wetland located on the eastern shore of...
Continuous Monitoring Data From Herring River Wetlands Cape Cod, Massachusetts, 2015-Jan2020
The Herring River estuary (Wellfleet, Cape Cod, Massachusetts) has been tidally restricted for over a century by a dike constructed near the mouth of the river. Behind the dike, the tidal restriction has caused the conversion of salt marsh wetlands to various other ecosystems including impounded freshwater marshes, flooded shrub land, drained forested upland, and wetlands dominated by...
Continuous Monitoring Data From Great Barnstable Marsh on Cape Cod, Massachusetts, 2017-19
Salt marshes are environmental ecosystems that contribute to coastal landscape resiliency to storms and rising sea level. Ninety percent of mid-Atlantic and New England salt marshes have been impacted by parallel grid ditching that began in the 1920s–40s to control mosquito populations and to provide employment opportunities during the Great Depression (James-Pirri and others, 2009...
Time-series of biogeochemical and flow data from a tidal salt-marsh creek, Sage Lot Pond, Waquoit Bay, Massachusetts, 2012-2016 (ver. 2.0, July 2023)
Extended time-series sensor data were collected between 2012 and 2016 in surface water of a tidal salt-marsh creek on Cape Cod, Massachusetts. The objective of this field study was to measure water chemical characteristics and flows, as part of a study to quantify lateral fluxes of dissolved carbon species between the salt marsh and estuary. Data consist of in-situ measurements including...
Geochemical data supporting analysis of geochemical conditions and nitrogen transport in nearshore groundwater and the subterranean estuary at a Cape Cod embayment, East Falmouth, Massachusetts
This data release provides analytical and other data in support of an analysis of nitrogen transport and transformation in groundwater and in a subterranean estuary in the Eel River and onshore locations on the Seacoast Shores peninsula, Falmouth, Massachusetts. The analysis is described in U.S. Geological Survey Scientific Investigations Report 2018-5095 by Colman and others (2018)...
Coastal Groundwater Chemical Data from the North and South Shores of Long Island, New York
Groundwater data were collected in the spring and fall of 2008 from three sites representing different geological settings and biogeochemical conditions within the surficial glacial aquifer of Long Island, NY. Investigations were designed to examine the extent to which average vadose zone thickness in contributing watersheds controlled biogeochemical conditions and processes, including...
Evidence of nitrate attenuation in intertidal and subtidal groundwater in a subterranean estuary at a Cape Cod embayment, East Falmouth, Massachusetts, 2015–16
Nitrogen dynamics in intertidal and nearshore subtidal groundwater (subterranean estuary) adjacent to the Seacoast Shores peninsula, Falmouth, Massachusetts, were investigated during 2015–16 by the U.S. Geological Survey. The peninsula is a densely populated residential area with septic systems and cesspools that are substantial sources of nitrogen to groundwater. The study area is in...
Authors
Thomas G. Huntington, Kevin D. Kroeger, Timothy D. McCobb, J.K. Böhlke, John A. Colman, Thomas W. Brooks, Beata Syzmczycha
Impoundment increases methane emissions in Phragmites-invaded coastal wetlands
Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted tidal exchange in vast areas of coastal wetlands. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion...
Authors
Rebecca Sanders-DeMott, Meagan J. Eagle, Kevin D. Kroeger, Faming Wang, Thomas W. Brooks, Jennifer A. O'Keefe Suttles, Sydney K. Nick, Adrian G. Mann, Jianwu Tang
Oxygen-controlled recirculating seepage meter reveals extent of nitrogen transformation in discharging coastal groundwater at the aquifer–estuary interface
Nutrient loads delivered to estuaries via submarine groundwater discharge (SGD) play an important role in the nitrogen (N) budget and eutrophication status. However, accurate and reliable quantification of the chemical flux across the final decimeters and centimeters at the sediment–estuary interface remains a challenge, because there is significant potential for biogeochemical...
Authors
Thomas W. Brooks, Kevin D. Kroeger, Holly A. Michael, Joanna K. York
Substantial nitrous oxide emissions from intertidal sediments and groundwater in anthropogenically-impacted West Falmouth Harbor, Massachusetts
Large N2O emissions were observed from intertidal sediments in a coastal estuary, West Falmouth Harbor, MA, USA. Average N2O emission rates from 41 chambers during summer 2008 were 10.7 mol N2O m(-2) h(-1)±4.43 μmol N2O m(-2) h(-1) (standard error). Emissions were highest from sediments within a known wastewater plume, where a maximum N2O emission rate was 155 μmol N2O m(-2) h(-1)...
Authors
Serena Moseman-Valtierra, Kevin D. Kroeger, John Crusius, Sandy Baldwin, Adrian G. Mann, Thomas W. Brooks, E. Pugh
Summary of oceanographic and water-quality measurements near the Blackwater National Wildlife Refuge, Maryland, 2011
Suspended-sediment transport is a critical element governing the geomorphology of tidal marshes. Marshes rely on both organic material and inorganic sediment deposition to maintain their elevation relative to sea level. In wetlands near the Blackwater National Wildlife Refuge, Maryland, portions of the salt marsh have been subsiding relative to sea level since the early 20th century...
Authors
Neil K. Ganju, Patrick J. Dickhudt, Ellyn T. Montgomery, Patrick Brennand, R. Kyle Derby, Thomas W. Brooks, Glenn R. Guntenspergen, Marinna A. Martini, Jonathan Borden, Sandra M. Baldwin