Heat and volcanic gases from slowly cooling magma rise and warm the dense salty water that occupies fractured rocks above the Yellowstone magma chamber. That brine, in turn, transfers its heat to overlying fresh groundwater which is recharged by rainfall and snowmelt from the surface. Water boiling at depth below the surface is hotter than the temperature of boiling at the surface. If it rises quickly, this superheated water can flash to steam, propelling both steam and hot water to the surface as a geyser. More commonly, hot water rises and loses its heat at a steady rate, flowing to the surface as a hot spring.
Learn more:
Related Content
How hot is Yellowstone?
Yellowstone is a plateau high in the Rocky Mountains, and is snowbound for over six months per year. The mean annual temperature is 2.2°C (36°F), barely above the freezing point of water. However, Yellowstone is also an active geothermal area with hot springs emerging at ~92°C (~198°F) (the boiling point of water at Yellowstone's mean altitude) and steam vents reported as high as 135°C (275°F)...
How do scientists know what’s going on beneath the ground at Yellowstone? Is Yellowstone monitored for volcanic activity?
Yellowstone Volcano is monitored for signs of volcanic activity. The Yellowstone Volcano Observatory (YVO) is a partnership between the U.S. Geological Survey (USGS), Yellowstone National Park, the University of Utah, the University of Wyoming, UNAVCO, the Montana Bureau of Mines and Geology, the Idaho Geological Survey, and the Wyoming State Geological Survey. YVO closely monitors volcanic...
How much volcanic activity has there been at Yellowstone since the most recent giant eruption?
Since the most recent giant (caldera-forming) eruption 631,000 years ago, approximately 80 relatively nonexplosive eruptions have occurred. Of these eruptions, at least 27 were rhyolite lava flows in the caldera, 13 were rhyolite lava flows outside the caldera, and 40 were basalt vents outside the caldera. The most recent volcanic eruption at Yellowstone, a lava flow on the Pitchstone Plateau...
When was the last time Yellowstone erupted?
The most recent volcanic activity at Yellowstone consisted of rhyolitic lava flows that erupted approximately 70,000 years ago. The largest of these flows formed the Pitchstone Plateau in southwestern Yellowstone National Park. Learn more: Yellowstone Eruption History The evolution of the Yellowstone Plateau Volcani Field: Past, present, and future!
How fast is the hotspot moving under Yellowstone?
Actually, the source of the hotspot is more or less stationary at depth within the Earth, and the North America plate moves southwest across it. The average rate of movement of the plate in the Yellowstone area for the last 16.5 million years has been about 4.6 centimeters (1.8 inches) per year. However, if shorter time intervals are analyzed, the plate can be inferred to have moved about 6.1...
Can we use the heat from Yellowstone for energy?
Geothermal energy (heat energy from the Earth's interior) is used to generate electricity in a variety of places throughout the world. Although Yellowstone National Park and its surroundings are a significant geothermal resource, the Park itself is off limits to development. Geothermal developments often cause a decrease in the flow of nearby hot springs and other geothermal features (like geysers...
How big is the magma chamber under Yellowstone?
Yellowstone is underlain by two magma bodies. The shallower one is composed of rhyolite (a high-silica rock type) and stretches from 5 km to about 17 km (3 to 10 mi) beneath the surface and is about 90 km (55 mi) long and about 40 km (25 mi) wide. The chamber is mostly solid, with only about 5-15% melt. The deeper reservoir is composed of basalt (a low-silica rock type) and extends from 20 to 50...
Yellowstone Volcano Observatory 2020 annual report
Hydrogeology of the Old Faithful area, Yellowstone National Park, Wyoming, and its relevance to natural resources and infrastructure
Yellowstone Volcano Observatory
Steam explosions, earthquakes, and volcanic eruptions -- what's in Yellowstone's future?
The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming
Related Content
- FAQ
How hot is Yellowstone?
Yellowstone is a plateau high in the Rocky Mountains, and is snowbound for over six months per year. The mean annual temperature is 2.2°C (36°F), barely above the freezing point of water. However, Yellowstone is also an active geothermal area with hot springs emerging at ~92°C (~198°F) (the boiling point of water at Yellowstone's mean altitude) and steam vents reported as high as 135°C (275°F)...
How do scientists know what’s going on beneath the ground at Yellowstone? Is Yellowstone monitored for volcanic activity?
Yellowstone Volcano is monitored for signs of volcanic activity. The Yellowstone Volcano Observatory (YVO) is a partnership between the U.S. Geological Survey (USGS), Yellowstone National Park, the University of Utah, the University of Wyoming, UNAVCO, the Montana Bureau of Mines and Geology, the Idaho Geological Survey, and the Wyoming State Geological Survey. YVO closely monitors volcanic...
How much volcanic activity has there been at Yellowstone since the most recent giant eruption?
Since the most recent giant (caldera-forming) eruption 631,000 years ago, approximately 80 relatively nonexplosive eruptions have occurred. Of these eruptions, at least 27 were rhyolite lava flows in the caldera, 13 were rhyolite lava flows outside the caldera, and 40 were basalt vents outside the caldera. The most recent volcanic eruption at Yellowstone, a lava flow on the Pitchstone Plateau...
When was the last time Yellowstone erupted?
The most recent volcanic activity at Yellowstone consisted of rhyolitic lava flows that erupted approximately 70,000 years ago. The largest of these flows formed the Pitchstone Plateau in southwestern Yellowstone National Park. Learn more: Yellowstone Eruption History The evolution of the Yellowstone Plateau Volcani Field: Past, present, and future!
How fast is the hotspot moving under Yellowstone?
Actually, the source of the hotspot is more or less stationary at depth within the Earth, and the North America plate moves southwest across it. The average rate of movement of the plate in the Yellowstone area for the last 16.5 million years has been about 4.6 centimeters (1.8 inches) per year. However, if shorter time intervals are analyzed, the plate can be inferred to have moved about 6.1...
Can we use the heat from Yellowstone for energy?
Geothermal energy (heat energy from the Earth's interior) is used to generate electricity in a variety of places throughout the world. Although Yellowstone National Park and its surroundings are a significant geothermal resource, the Park itself is off limits to development. Geothermal developments often cause a decrease in the flow of nearby hot springs and other geothermal features (like geysers...
How big is the magma chamber under Yellowstone?
Yellowstone is underlain by two magma bodies. The shallower one is composed of rhyolite (a high-silica rock type) and stretches from 5 km to about 17 km (3 to 10 mi) beneath the surface and is about 90 km (55 mi) long and about 40 km (25 mi) wide. The chamber is mostly solid, with only about 5-15% melt. The deeper reservoir is composed of basalt (a low-silica rock type) and extends from 20 to 50...
- Multimedia
- Publications
Yellowstone Volcano Observatory 2020 annual report
The Yellowstone Volcano Observatory (YVO) monitors volcanic and hydrothermal activity associated with the Yellowstone magmatic system, conducts research into magmatic processes occurring beneath Yellowstone Caldera, and issues timely warnings and guidance related to potential future geologic hazards. This report summarizes the activities and findings of YVO during the year 2020, focusing on the YeHydrogeology of the Old Faithful area, Yellowstone National Park, Wyoming, and its relevance to natural resources and infrastructure
A panel of leading experts (The Old Faithful Science Review Panel) was convened by Yellowstone National Park (YNP) to review and summarize the geological and hydrological understanding that can inform National Park Service management of the Upper Geyser Basin area. We give an overview of present geological and hydrological knowledge of the Old Faithful hydrothermal (hot water) system and related tYellowstone Volcano Observatory
Eruption of Yellowstone's Old Faithful Geyser. Yellowstone hosts the world's largest and most diverse collection of natural thermal features, which are the surface expression of magmatic heat at shallow depths in the crust. The Yellowstone system is monitored by the Yellowstone Volcano Observatory (YVO), a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and the UnivSteam explosions, earthquakes, and volcanic eruptions -- what's in Yellowstone's future?
Yellowstone, one of the world’s largest active volcanic systems, has produced several giant volcanic eruptions in the past few million years, as well as many smaller eruptions and steam explosions. Although no eruptions of lava or volcanic ash have occurred for many thousands of years, future eruptions are likely. In the next few hundred years, hazards will most probably be limited to ongoing geysThe Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming
Norris Geyser Basin, normally shortened to Norris Basin, is adjacent to the north rim of the Yellowstone caldera at the common intersection of the caldera rim and the Norris-Mammoth Corridor, a zone of faults, volcanic vents, and thermal activity that strikes north from the caldera rim to Mammoth Hot Springs. An east-west fault zone terminates the Gallatin Range at its southern end and extends fro - News