Chronic and episodic acidification of streams along the Appalachian Trail corridor, eastern United States
Acidic atmospheric deposition has adversely affected aquatic ecosystems globally. As emissions and deposition of sulfur (S) and nitrogen (N) have declined in recent decades across North America and Europe, ecosystem recovery is evident in many surface waters. However, persistent chronic and episodic acidification remain important concerns in vulnerable regions. We evaluated acidification in 269 headwater streams during 2010–2012 along the Appalachian Trail (AT) that transits several ecoregions and is located downwind of high levels of S and N emission sources. Discharge was estimated by matching sampled streams to those of a nearby gaged stream and assuming equivalent daily mean flow percentiles. Charge balance acid‐neutralizing capacity (ANC) values were adjusted to the 15th (Q15) and 85th flow percentiles (Q85) by applying the ANC/discharge slope among sample pairs collected at each stream. A site‐based approach was applied to streams sampled twice or more and a second regression‐based approach to streams sampled once to estimate episodic acidification magnitudes as the ANC difference from Q15 to Q85. Streams with ANC
Citation Information
| Publication Year | 2020 |
|---|---|
| Title | Chronic and episodic acidification of streams along the Appalachian Trail corridor, eastern United States |
| DOI | 10.1002/hyp.13668 |
| Authors | Douglas A. Burns, Todd McDonnell, Karen Rice, Gregory Lawrence, Timothy Sullivan |
| Publication Type | Article |
| Publication Subtype | Journal Article |
| Series Title | Hydrological Processes |
| Index ID | 70209441 |
| Record Source | USGS Publications Warehouse |
| USGS Organization | New York Water Science Center |