Peter M Powers, PhD
I am a research and development geophysicist specializing in probabilisitic seismic hazard analysis.
Science and Products
Operational Earthquake Forecasting – Implementing a Real-Time System for California
It is well know that every earthquake can spawn others (e.g., as aftershocks), and that such triggered events can be large and damaging, as recently demonstrated by L’Aquila, Italy and Christchurch, New Zealand earthquakes. In spite of being an explicit USGS strategic-action priority (http://pubs.usgs.gov/of/2012/1088; page 32), the USGS currently lacks an automated system with which to...
Filter Total Items: 13
Data Release for the The 2023 Alaska National Seismic Hazard Model Data Release for the The 2023 Alaska National Seismic Hazard Model
The U.S. National Seismic Hazard Model (NSHM) for the state of Alaska was updated in 2023 as part of the 50-state NSHM update. The new model incorporates more than 15 years of additional science since the release of the previous model in 2007 and has been reviewed by a six-member review panel and a supplementary eight-member team of ground motion model developers. This time-independent
Data Release for the 2023 U.S. 50-State National Seismic Hazard Model - Overview Data Release for the 2023 U.S. 50-State National Seismic Hazard Model - Overview
This data release contains data sets associated with the 2023 50-State National Seismic Hazard Model Update. The 2023 50-State National Seimsic Hazard Model (NSHM) Update includes an update to the NSHMs for the conterminous U.S (CONUS, last updated in 2018), Alaska (AK, last updated in 2007), and Hawaii (last updated in 2001). Data sets include inputs like seismicity catalogs used as...
Earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023 (western U.S.) (ver. 3.0, December 2023) Earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023 (western U.S.) (ver. 3.0, December 2023)
This Data Release contains version 3.0 of two related earthquake geology databases for use in the 2023 U.S. National Seismic Hazard Model. The databases are: 1) A fault sections database (“NSHM23_FSD_v3”), which depicts the geometry of faults capable of hosting independent earthquakes, and 2) an earthquake geology site information database (“NSHM23_EQGeoDB_v3”), which contains fault slip...
nshmp-haz-v2 nshmp-haz-v2
U.S. Geological Survey (USGS) National Seismic Hazard Model Project (NSHMP) codes for performing probabilistic seismic hazard (PSHA) and related analyses. These codes are intended for use with seismic hazard models developed by the NSHMP for the U.S. and its territories. This project includes a variety of command line applications and web service classes and relies on the nshmp-lib...
nshm-hawaii-v2 nshm-hawaii-v2
National Seismic Hazard Model (NSHM) for the State of Hawaii. This model is intended for use with U.S. Geological Survey (USGS) hazard software nshmp-haz.
nshm-conus-v5 nshm-conus-v5
National Seismic Hazard Model (NSHM) for the conterminous U.S. This model is intended for use with U.S. Geological Survey (USGS) hazard software nshmp-haz. This model was last updated in 2018.
nshmp-lib nshmp-lib
nshmp-lib is a USGS developed Java library that supports probabilistic seismic hazard (PSHA) and related analyses. This project includes all the code required to load, process and query USGS National Seismic Hazard Models (NSHMs). nshmp-lib is used by command line applications and web services found in the nshmp-haz project. See that project for running PSHA calculations.
Earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023 (western US) (ver. 2.0, February 2022) Earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023 (western US) (ver. 2.0, February 2022)
This Data Release contains preliminary versions of two related databases: 1) A fault sections database ('NSHM23_FSD_v2'), which depicts the geometry of faults capable of hosting independent earthquakes, and 2) An earthquake geology site information database ('NSHM23_EQGeoDB_v2'), which contains fault slip-rate constraints at points. These databases were prepared in anticipation of...
Data Release for PGV Data for the 2018 National Seismic Hazard Model for the Conterminous United States Data Release for PGV Data for the 2018 National Seismic Hazard Model for the Conterminous United States
Peak ground velocity (PGV) gridded probabilistic seismic hazard data for the updated 2018 National Seismic Hazard Model (NSHM) for the Conterminous United States (CONUS). PGV hazard curves and ground motions have been calculated on a 0.05 by 0.05 degree grid using the NSHM CONUS 2018 earthquake source model. PGV support has been incorporated into the NSHM using a newly developed PGV...
Geologic Inputs for the 2023 Alaska Update to the U.S. National Seismic Hazard Model (NSHM) Geologic Inputs for the 2023 Alaska Update to the U.S. National Seismic Hazard Model (NSHM)
This data release is composed of three crustal (as opposed to subduction zone) geologic input datasets for the 2023 Alaska update to the U.S. National Seismic Hazard Model (NSHM): 1) fault section vector line data, 2) fault zone vector polygon data, and 3) accompanying earthquake geology attributes.
Earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 Earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0
This Data Release contains preliminary versions of two related databases: 1) A fault sections database ("NSHM2023_FaultSections_v1"), which depicts the geometry of faults capable of hosting independent earthquakes, and 2) An earthquake geology site information database ("NSHM2023_EQGeoDB_v1"), which contains fault slip-rate constraints at points. These databases were prepared in...
nshm-fault-sections nshm-fault-sections
A repository of all geologic fault section data included in USGS National Seismic Hazard Models
Seismic-hazard maps for the conterminous United States, 2014 Seismic-hazard maps for the conterminous United States, 2014
The maps presented here provide an update to the 2008 data contained in U.S Geological Survey Scientific Investigations Map 3195 (http://pubs.usgs.gov/sim/3195/).Probabilistic seismic-hazard maps were prepared for the conterminous United States for 2014 portraying peak horizontal acceleration and horizontal spectral response acceleration for 0.2- and 1.0-second periods with probabilities...
Filter Total Items: 38
Subduction zone earthquake catalog separation tool: Implementation in the USGS 2025 Puerto Rico and U.S. Virgin Islands National Seismic Hazard Model Subduction zone earthquake catalog separation tool: Implementation in the USGS 2025 Puerto Rico and U.S. Virgin Islands National Seismic Hazard Model
The U.S. Geological Survey (USGS) periodically releases updates to National Seismic Hazard Model (NSHM) for the United States and its territories leveraging current scientific knowledge and methodologies to guide public policy, building codes, and risk assessments regarding potential ground shaking due to earthquakes that may result in infrastructure damage. In subduction zones, there is...
Authors
Kirstie Haynie, Eric Thompson, Mike Hearne, Gavin P. Hayes, David Shelly, Allison Shumway, Andrea Llenos, Andrew Michael, Peter Powers
A scientific vision and roadmap for earthquake rupture forecast developments, a USGS perspective A scientific vision and roadmap for earthquake rupture forecast developments, a USGS perspective
We articulate a scientific vision and roadmap for the development of improved Earthquake Rupture Forecast models, which are one of the two main modeling components used in modern seismic hazard and risk analysis. One primary future objective is to provide fully time-dependent models that include both elastic rebound and spatiotemporal clustering nationwide, which is particularly...
Authors
Edward Field, Alexandra Hatem, Bruce Shaw, Morgan Page, P. Mai, Kevin Ross Milner, Andrea Llenos, Andrew Michael, Frederick Pollitz, Jessica Jobe, Thomas Parsons, Olaf Zielke, David Shelly, Alice-Agnes Gabriel, Devin McPhillips, Richard Briggs, Elizabeth Cochran, Nico Luco, Mark Petersen, Peter Powers, Justin Rubinstein, Allison Shumway, Nicholas van der Elst, Yuehua Zeng, Christopher DuRoss, Jason Altekruse
The 2023 Alaska National Seismic Hazard Model The 2023 Alaska National Seismic Hazard Model
US Geological Survey (USGS) National Seismic Hazard Models (NSHMs) are used extensively for seismic design regulations in the United States and earthquake scenario development, as well as risk assessment and mitigation for both buildings and infrastructure. This 2023 update of the long-term, time-independent Alaska NSHM includes substantial changes to both the earthquake rupture forecast...
Authors
Peter Powers, Jason Altekruse, Andrea Llenos, Andrew Michael, Kirstie Haynie, Peter J. Haeussler, Adrian Bender, Sanaz Rezaeian, Morgan Moschetti, James Smith, Richard Briggs, Robert Witter, Charles Mueller, Yuehua Zeng, Demi Girot, Julie Herrick, Allison Shumway, Mark Petersen
Framework for implementing damping scaling factors in U.S. Geological Survey National Seismic Hazard Models Framework for implementing damping scaling factors in U.S. Geological Survey National Seismic Hazard Models
Traditionally, probabilistic seismic hazard analysis (PSHA) has focused on calculating ground motion hazard curves for elastic, 5%-damped pseudo spectral accelerations, Sa(T,5%), which are used as the basis for engineering design parameters and targets for ground motion selection and modification. However, structures and geotechnical systems can exhibit a wide range of damping ratios...
Authors
Andrew Makdisi, Dallin Smith, Sanaz Rezaeian, Peter Powers, Kyle Withers
The 2023 U.S. National Seismic Hazard Model: Subduction ground motion models The 2023 U.S. National Seismic Hazard Model: Subduction ground motion models
The US Geological Survey National Seismic Hazard Models (NSHMs) are used to calculate earthquake ground-shaking intensities for design and rehabilitation of structures in the United States. The most recent 2014 and 2018 versions of the NSHM for the conterminous United States included major updates to ground-motion models (GMMs) for active and stable crustal tectonic settings; however...
Authors
Sanaz Rezaeian, Peter Powers, Jason Altekruse, Sean Ahdi, Mark Petersen, Allison Shumway, Arthur Frankel, Erin Wirth, James Smith, Morgan Moschetti, Kyle Withers, Julie Herrick
Integration of rupture directivity models for the US National Seismic Hazard Model Integration of rupture directivity models for the US National Seismic Hazard Model
Several rupture directivity models (DMs) have been developed in recent years to describe the near-source spatial variations in ground motion amplitudes related to propagation of rupture along the fault. We recently organized an effort towards incorporating these directivity effects into the USGS National Seismic Hazard Model (NSHM), by first evaluating the community's work and potential...
Authors
Kyle Withers, Morgan Moschetti, Peter Powers, Mark Petersen, Robert Graves, Brad Aagaard, Annemarie Baltay Sundstrom, Nico Luco, Erin Wirth, Sanaz Rezaeian, Eric Thompson
The 2023 US National Seismic Hazard Model: Ground-motion characterization for the conterminous United States The 2023 US National Seismic Hazard Model: Ground-motion characterization for the conterminous United States
We update the ground-motion characterization for the 2023 National Seismic Hazard Model (NSHM) for the conterminous United States. The update includes the use of new ground-motion models (GMMs) in the Cascadia subduction zone; an adjustment to the central and eastern United States (CEUS) GMMs to reduce misfits with observed data; an updated boundary for the application of GMMs for...
Authors
Morgan Moschetti, Brad Aagaard, Sean Ahdi, Jason Altekruse, Oliver Boyd, Arthur Frankel, Julie Herrick, Mark Petersen, Peter Powers, Sanaz Rezaeian, Allison Shumway, James Smith, William Stephenson, Eric Thompson, Kyle Withers
Earthquake rupture forecast model construction for the 2023 U.S. 50‐State National Seismic Hazard Model Update: Central and eastern U.S. fault‐based source model Earthquake rupture forecast model construction for the 2023 U.S. 50‐State National Seismic Hazard Model Update: Central and eastern U.S. fault‐based source model
As part of the U.S. Geological Survey’s 2023 50‐State National Seismic Hazard Model (NSHM), we make modest revisions and additions to the central and eastern U.S. (CEUS) fault‐based seismic source model that result in locally substantial hazard changes. The CEUS fault‐based source model was last updated as part of the 2014 NSHM and considered new information from the Seismic Source
Authors
Allison Shumway, Mark Petersen, Gabriel Toro, Peter Powers, Jason Altekruse, Julie Herrick, Kenneth S. Rukstales, Jessica Jobe, Alexandra Hatem, Demi Girot
The 2023 US 50-State National Seismic Hazard Model: Overview and implications The 2023 US 50-State National Seismic Hazard Model: Overview and implications
The US National Seismic Hazard Model (NSHM) was updated in 2023 for all 50 states using new science on seismicity, fault ruptures, ground motions, and probabilistic techniques to produce a standard of practice for public policy and other engineering applications (defined for return periods greater than ∼475 or less than ∼10,000 years). Changes in 2023 time-independent seismic hazard...
Authors
Mark Petersen, Allison Shumway, Peter Powers, Edward Field, Morgan Moschetti, Kishor Jaiswal, Kevin Milner, Sanaz Rezaeian, Arthur Frankel, Andrea Llenos, Andrew Michael, Jason Altekruse, Sean Ahdi, Kyle Withers, Charles Mueller, Yuehua Zeng, Robert Chase, Leah Salditch, Nico Luco, Kenneth S. Rukstales, Julie Herrick, Demi Girot, Brad Aagaard, Adrian Bender, Michael Blanpied, Richard Briggs, Oliver Boyd, Brandon Clayton, Christopher DuRoss, Eileen L. Evans, Peter J. Haeussler, Alexandra Hatem, Kirstie Haynie, Elizabeth Hearn, Kaj Johnson, Zachary Kortum, N. Kwong, Andrew Makdisi, Henry Mason, Daniel McNamara, Devin McPhillips, P. Okubo, Morgan Page, Frederick Pollitz, Justin Rubinstein, Bruce Shaw, Zheng-Kang Shen, Brian Shiro, James Smith, William Stephenson, Eric Thompson, Jessica Jobe, Erin Wirth, Robert C. Witter
The USGS 2023 Conterminous U.S. time‐independent earthquake rupture forecast The USGS 2023 Conterminous U.S. time‐independent earthquake rupture forecast
We present the 2023 U.S. Geological Survey time‐independent earthquake rupture forecast for the conterminous United States, which gives authoritative estimates of the magnitude, location, and time‐averaged frequency of potentially damaging earthquakes throughout the region. In addition to updating virtually all model components, a major focus has been to provide a better representation...
Authors
Edward Field, Kevin Milner, Alexandra Hatem, Peter Powers, Frederick Pollitz, Andrea Llenos, Yuehua Zeng, Kaj Johnson, Bruce Shaw, Devin McPhillips, Jessica Jobe, Allison Shumway, Andrew Michael, Zheng-Kang Shen, Eileen L. Evans, Elizabeth Hearn, Charles Mueller, Arthur Frankel, Mark Petersen, Christopher DuRoss, Richard Briggs, Morgan Page, Justin Rubinstein, Julie Herrick
Magnitude conversion and earthquake recurrence rate models for the central and eastern United States Magnitude conversion and earthquake recurrence rate models for the central and eastern United States
Development of Seismic Source Characterization (SSC) models, which is an essential part of Probabilistic Seismic Hazard Analyses (PSHA), can help forecast the temporal and spatial distribution of future damaging earthquakes (𝑀w≥ 5) in seismically active regions. Because it is impossible to associate all earthquakes with known faults, seismic source models for PSHA often include sources...
Authors
Rasool Anooshehpoor, Thomas Weaver, Jon Ake, Cliff Munson, Morgan Moschetti, David Shelly, Peter Powers
Western U.S. deformation models for the 2023 update to the U.S. National Seismic Hazard Model Western U.S. deformation models for the 2023 update to the U.S. National Seismic Hazard Model
This report describes geodetic and geologic information used to constrain deformation models of the 2023 update to the National Seismic Hazard Model (NSHM), a set of deformation models to interpret these data, and their implications for earthquake rates in the western United States. Recent updates provide a much larger data set of Global Positioning System crustal velocities than used in...
Authors
Frederick Pollitz, Eileen L. Evans, Edward Field, Alexandra Hatem, Elizabeth Hearn, Kaj Johnson, Jessica Murray, Peter Powers, Zheng-Kang Shen, Crystal Wespestad, Yuehua Zeng
Unified Hazard Tool Unified Hazard Tool
Use this web application to obtain earthquake hazards data from the U.S. Hazard Model.
nshm-alaska-v2 nshm-alaska-v2
Software release of 2023 Alaska NSHM input files for use with nshmp-haz.
nshm-hawaii-v2 nshm-hawaii-v2
National Seismic Hazard Model (NSHM) for the State of Hawaii. This model is intended for use with U.S. Geological Survey (USGS) hazard software nshmp-haz.
nshm-conus-v5 nshm-conus-v5
National Seismic Hazard Model (NSHM) for the conterminous U.S. This model is intended for use with U.S. Geological Survey (USGS) hazard software nshmp-haz. This model was last updated in 2018.
nshmp-haz-v2 nshmp-haz-v2
U.S. Geological Survey (USGS) National Seismic Hazard Model Project (NSHMP) codes for performing probabilistic seismic hazard (PSHA) and related analyses. These codes are intended for use with seismic hazard models developed by the NSHMP for the U.S. and its territories. This project includes a variety of command line applications and web service classes and relies on the nshmp-lib...
nshmp-lib nshmp-lib
nshmp-lib is a USGS developed Java library that supports probabilistic seismic hazard (PSHA) and related analyses. This project includes all the code required to load, process and query USGS National Seismic Hazard Models (NSHMs). nshmp-lib is used by command line applications and web services found in the nshmp-haz project. See that project for running PSHA calculations.
nshm-fault-sections nshm-fault-sections
A repository of all geologic fault section data included in USGS National Seismic Hazard Models
nshmp-haz-v1 nshmp-haz-v1
U.S. Geological Survey (USGS) National Seismic Hazard Mapping Project (NSHMP) code for performing probabilistic seismic hazard (PSHA) and related analyses. These codes are intended for use with seismic hazard models developed by the NSHMP for the U.S. and its territories.
New USGS map shows where damaging earthquakes are most likely to occur in US New USGS map shows where damaging earthquakes are most likely to occur in US
USGS scientists and our partners recently revealed the latest National Seismic Hazard Model, showing that nearly 75% of the United States could experience a damaging earthquake, emphasizing seismic hazards span a significant part of the country.
Science and Products
Operational Earthquake Forecasting – Implementing a Real-Time System for California
It is well know that every earthquake can spawn others (e.g., as aftershocks), and that such triggered events can be large and damaging, as recently demonstrated by L’Aquila, Italy and Christchurch, New Zealand earthquakes. In spite of being an explicit USGS strategic-action priority (http://pubs.usgs.gov/of/2012/1088; page 32), the USGS currently lacks an automated system with which to...
Filter Total Items: 13
Data Release for the The 2023 Alaska National Seismic Hazard Model Data Release for the The 2023 Alaska National Seismic Hazard Model
The U.S. National Seismic Hazard Model (NSHM) for the state of Alaska was updated in 2023 as part of the 50-state NSHM update. The new model incorporates more than 15 years of additional science since the release of the previous model in 2007 and has been reviewed by a six-member review panel and a supplementary eight-member team of ground motion model developers. This time-independent
Data Release for the 2023 U.S. 50-State National Seismic Hazard Model - Overview Data Release for the 2023 U.S. 50-State National Seismic Hazard Model - Overview
This data release contains data sets associated with the 2023 50-State National Seismic Hazard Model Update. The 2023 50-State National Seimsic Hazard Model (NSHM) Update includes an update to the NSHMs for the conterminous U.S (CONUS, last updated in 2018), Alaska (AK, last updated in 2007), and Hawaii (last updated in 2001). Data sets include inputs like seismicity catalogs used as...
Earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023 (western U.S.) (ver. 3.0, December 2023) Earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023 (western U.S.) (ver. 3.0, December 2023)
This Data Release contains version 3.0 of two related earthquake geology databases for use in the 2023 U.S. National Seismic Hazard Model. The databases are: 1) A fault sections database (“NSHM23_FSD_v3”), which depicts the geometry of faults capable of hosting independent earthquakes, and 2) an earthquake geology site information database (“NSHM23_EQGeoDB_v3”), which contains fault slip...
nshmp-haz-v2 nshmp-haz-v2
U.S. Geological Survey (USGS) National Seismic Hazard Model Project (NSHMP) codes for performing probabilistic seismic hazard (PSHA) and related analyses. These codes are intended for use with seismic hazard models developed by the NSHMP for the U.S. and its territories. This project includes a variety of command line applications and web service classes and relies on the nshmp-lib...
nshm-hawaii-v2 nshm-hawaii-v2
National Seismic Hazard Model (NSHM) for the State of Hawaii. This model is intended for use with U.S. Geological Survey (USGS) hazard software nshmp-haz.
nshm-conus-v5 nshm-conus-v5
National Seismic Hazard Model (NSHM) for the conterminous U.S. This model is intended for use with U.S. Geological Survey (USGS) hazard software nshmp-haz. This model was last updated in 2018.
nshmp-lib nshmp-lib
nshmp-lib is a USGS developed Java library that supports probabilistic seismic hazard (PSHA) and related analyses. This project includes all the code required to load, process and query USGS National Seismic Hazard Models (NSHMs). nshmp-lib is used by command line applications and web services found in the nshmp-haz project. See that project for running PSHA calculations.
Earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023 (western US) (ver. 2.0, February 2022) Earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023 (western US) (ver. 2.0, February 2022)
This Data Release contains preliminary versions of two related databases: 1) A fault sections database ('NSHM23_FSD_v2'), which depicts the geometry of faults capable of hosting independent earthquakes, and 2) An earthquake geology site information database ('NSHM23_EQGeoDB_v2'), which contains fault slip-rate constraints at points. These databases were prepared in anticipation of...
Data Release for PGV Data for the 2018 National Seismic Hazard Model for the Conterminous United States Data Release for PGV Data for the 2018 National Seismic Hazard Model for the Conterminous United States
Peak ground velocity (PGV) gridded probabilistic seismic hazard data for the updated 2018 National Seismic Hazard Model (NSHM) for the Conterminous United States (CONUS). PGV hazard curves and ground motions have been calculated on a 0.05 by 0.05 degree grid using the NSHM CONUS 2018 earthquake source model. PGV support has been incorporated into the NSHM using a newly developed PGV...
Geologic Inputs for the 2023 Alaska Update to the U.S. National Seismic Hazard Model (NSHM) Geologic Inputs for the 2023 Alaska Update to the U.S. National Seismic Hazard Model (NSHM)
This data release is composed of three crustal (as opposed to subduction zone) geologic input datasets for the 2023 Alaska update to the U.S. National Seismic Hazard Model (NSHM): 1) fault section vector line data, 2) fault zone vector polygon data, and 3) accompanying earthquake geology attributes.
Earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 Earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0
This Data Release contains preliminary versions of two related databases: 1) A fault sections database ("NSHM2023_FaultSections_v1"), which depicts the geometry of faults capable of hosting independent earthquakes, and 2) An earthquake geology site information database ("NSHM2023_EQGeoDB_v1"), which contains fault slip-rate constraints at points. These databases were prepared in...
nshm-fault-sections nshm-fault-sections
A repository of all geologic fault section data included in USGS National Seismic Hazard Models
Seismic-hazard maps for the conterminous United States, 2014 Seismic-hazard maps for the conterminous United States, 2014
The maps presented here provide an update to the 2008 data contained in U.S Geological Survey Scientific Investigations Map 3195 (http://pubs.usgs.gov/sim/3195/).Probabilistic seismic-hazard maps were prepared for the conterminous United States for 2014 portraying peak horizontal acceleration and horizontal spectral response acceleration for 0.2- and 1.0-second periods with probabilities...
Filter Total Items: 38
Subduction zone earthquake catalog separation tool: Implementation in the USGS 2025 Puerto Rico and U.S. Virgin Islands National Seismic Hazard Model Subduction zone earthquake catalog separation tool: Implementation in the USGS 2025 Puerto Rico and U.S. Virgin Islands National Seismic Hazard Model
The U.S. Geological Survey (USGS) periodically releases updates to National Seismic Hazard Model (NSHM) for the United States and its territories leveraging current scientific knowledge and methodologies to guide public policy, building codes, and risk assessments regarding potential ground shaking due to earthquakes that may result in infrastructure damage. In subduction zones, there is...
Authors
Kirstie Haynie, Eric Thompson, Mike Hearne, Gavin P. Hayes, David Shelly, Allison Shumway, Andrea Llenos, Andrew Michael, Peter Powers
A scientific vision and roadmap for earthquake rupture forecast developments, a USGS perspective A scientific vision and roadmap for earthquake rupture forecast developments, a USGS perspective
We articulate a scientific vision and roadmap for the development of improved Earthquake Rupture Forecast models, which are one of the two main modeling components used in modern seismic hazard and risk analysis. One primary future objective is to provide fully time-dependent models that include both elastic rebound and spatiotemporal clustering nationwide, which is particularly...
Authors
Edward Field, Alexandra Hatem, Bruce Shaw, Morgan Page, P. Mai, Kevin Ross Milner, Andrea Llenos, Andrew Michael, Frederick Pollitz, Jessica Jobe, Thomas Parsons, Olaf Zielke, David Shelly, Alice-Agnes Gabriel, Devin McPhillips, Richard Briggs, Elizabeth Cochran, Nico Luco, Mark Petersen, Peter Powers, Justin Rubinstein, Allison Shumway, Nicholas van der Elst, Yuehua Zeng, Christopher DuRoss, Jason Altekruse
The 2023 Alaska National Seismic Hazard Model The 2023 Alaska National Seismic Hazard Model
US Geological Survey (USGS) National Seismic Hazard Models (NSHMs) are used extensively for seismic design regulations in the United States and earthquake scenario development, as well as risk assessment and mitigation for both buildings and infrastructure. This 2023 update of the long-term, time-independent Alaska NSHM includes substantial changes to both the earthquake rupture forecast...
Authors
Peter Powers, Jason Altekruse, Andrea Llenos, Andrew Michael, Kirstie Haynie, Peter J. Haeussler, Adrian Bender, Sanaz Rezaeian, Morgan Moschetti, James Smith, Richard Briggs, Robert Witter, Charles Mueller, Yuehua Zeng, Demi Girot, Julie Herrick, Allison Shumway, Mark Petersen
Framework for implementing damping scaling factors in U.S. Geological Survey National Seismic Hazard Models Framework for implementing damping scaling factors in U.S. Geological Survey National Seismic Hazard Models
Traditionally, probabilistic seismic hazard analysis (PSHA) has focused on calculating ground motion hazard curves for elastic, 5%-damped pseudo spectral accelerations, Sa(T,5%), which are used as the basis for engineering design parameters and targets for ground motion selection and modification. However, structures and geotechnical systems can exhibit a wide range of damping ratios...
Authors
Andrew Makdisi, Dallin Smith, Sanaz Rezaeian, Peter Powers, Kyle Withers
The 2023 U.S. National Seismic Hazard Model: Subduction ground motion models The 2023 U.S. National Seismic Hazard Model: Subduction ground motion models
The US Geological Survey National Seismic Hazard Models (NSHMs) are used to calculate earthquake ground-shaking intensities for design and rehabilitation of structures in the United States. The most recent 2014 and 2018 versions of the NSHM for the conterminous United States included major updates to ground-motion models (GMMs) for active and stable crustal tectonic settings; however...
Authors
Sanaz Rezaeian, Peter Powers, Jason Altekruse, Sean Ahdi, Mark Petersen, Allison Shumway, Arthur Frankel, Erin Wirth, James Smith, Morgan Moschetti, Kyle Withers, Julie Herrick
Integration of rupture directivity models for the US National Seismic Hazard Model Integration of rupture directivity models for the US National Seismic Hazard Model
Several rupture directivity models (DMs) have been developed in recent years to describe the near-source spatial variations in ground motion amplitudes related to propagation of rupture along the fault. We recently organized an effort towards incorporating these directivity effects into the USGS National Seismic Hazard Model (NSHM), by first evaluating the community's work and potential...
Authors
Kyle Withers, Morgan Moschetti, Peter Powers, Mark Petersen, Robert Graves, Brad Aagaard, Annemarie Baltay Sundstrom, Nico Luco, Erin Wirth, Sanaz Rezaeian, Eric Thompson
The 2023 US National Seismic Hazard Model: Ground-motion characterization for the conterminous United States The 2023 US National Seismic Hazard Model: Ground-motion characterization for the conterminous United States
We update the ground-motion characterization for the 2023 National Seismic Hazard Model (NSHM) for the conterminous United States. The update includes the use of new ground-motion models (GMMs) in the Cascadia subduction zone; an adjustment to the central and eastern United States (CEUS) GMMs to reduce misfits with observed data; an updated boundary for the application of GMMs for...
Authors
Morgan Moschetti, Brad Aagaard, Sean Ahdi, Jason Altekruse, Oliver Boyd, Arthur Frankel, Julie Herrick, Mark Petersen, Peter Powers, Sanaz Rezaeian, Allison Shumway, James Smith, William Stephenson, Eric Thompson, Kyle Withers
Earthquake rupture forecast model construction for the 2023 U.S. 50‐State National Seismic Hazard Model Update: Central and eastern U.S. fault‐based source model Earthquake rupture forecast model construction for the 2023 U.S. 50‐State National Seismic Hazard Model Update: Central and eastern U.S. fault‐based source model
As part of the U.S. Geological Survey’s 2023 50‐State National Seismic Hazard Model (NSHM), we make modest revisions and additions to the central and eastern U.S. (CEUS) fault‐based seismic source model that result in locally substantial hazard changes. The CEUS fault‐based source model was last updated as part of the 2014 NSHM and considered new information from the Seismic Source
Authors
Allison Shumway, Mark Petersen, Gabriel Toro, Peter Powers, Jason Altekruse, Julie Herrick, Kenneth S. Rukstales, Jessica Jobe, Alexandra Hatem, Demi Girot
The 2023 US 50-State National Seismic Hazard Model: Overview and implications The 2023 US 50-State National Seismic Hazard Model: Overview and implications
The US National Seismic Hazard Model (NSHM) was updated in 2023 for all 50 states using new science on seismicity, fault ruptures, ground motions, and probabilistic techniques to produce a standard of practice for public policy and other engineering applications (defined for return periods greater than ∼475 or less than ∼10,000 years). Changes in 2023 time-independent seismic hazard...
Authors
Mark Petersen, Allison Shumway, Peter Powers, Edward Field, Morgan Moschetti, Kishor Jaiswal, Kevin Milner, Sanaz Rezaeian, Arthur Frankel, Andrea Llenos, Andrew Michael, Jason Altekruse, Sean Ahdi, Kyle Withers, Charles Mueller, Yuehua Zeng, Robert Chase, Leah Salditch, Nico Luco, Kenneth S. Rukstales, Julie Herrick, Demi Girot, Brad Aagaard, Adrian Bender, Michael Blanpied, Richard Briggs, Oliver Boyd, Brandon Clayton, Christopher DuRoss, Eileen L. Evans, Peter J. Haeussler, Alexandra Hatem, Kirstie Haynie, Elizabeth Hearn, Kaj Johnson, Zachary Kortum, N. Kwong, Andrew Makdisi, Henry Mason, Daniel McNamara, Devin McPhillips, P. Okubo, Morgan Page, Frederick Pollitz, Justin Rubinstein, Bruce Shaw, Zheng-Kang Shen, Brian Shiro, James Smith, William Stephenson, Eric Thompson, Jessica Jobe, Erin Wirth, Robert C. Witter
The USGS 2023 Conterminous U.S. time‐independent earthquake rupture forecast The USGS 2023 Conterminous U.S. time‐independent earthquake rupture forecast
We present the 2023 U.S. Geological Survey time‐independent earthquake rupture forecast for the conterminous United States, which gives authoritative estimates of the magnitude, location, and time‐averaged frequency of potentially damaging earthquakes throughout the region. In addition to updating virtually all model components, a major focus has been to provide a better representation...
Authors
Edward Field, Kevin Milner, Alexandra Hatem, Peter Powers, Frederick Pollitz, Andrea Llenos, Yuehua Zeng, Kaj Johnson, Bruce Shaw, Devin McPhillips, Jessica Jobe, Allison Shumway, Andrew Michael, Zheng-Kang Shen, Eileen L. Evans, Elizabeth Hearn, Charles Mueller, Arthur Frankel, Mark Petersen, Christopher DuRoss, Richard Briggs, Morgan Page, Justin Rubinstein, Julie Herrick
Magnitude conversion and earthquake recurrence rate models for the central and eastern United States Magnitude conversion and earthquake recurrence rate models for the central and eastern United States
Development of Seismic Source Characterization (SSC) models, which is an essential part of Probabilistic Seismic Hazard Analyses (PSHA), can help forecast the temporal and spatial distribution of future damaging earthquakes (𝑀w≥ 5) in seismically active regions. Because it is impossible to associate all earthquakes with known faults, seismic source models for PSHA often include sources...
Authors
Rasool Anooshehpoor, Thomas Weaver, Jon Ake, Cliff Munson, Morgan Moschetti, David Shelly, Peter Powers
Western U.S. deformation models for the 2023 update to the U.S. National Seismic Hazard Model Western U.S. deformation models for the 2023 update to the U.S. National Seismic Hazard Model
This report describes geodetic and geologic information used to constrain deformation models of the 2023 update to the National Seismic Hazard Model (NSHM), a set of deformation models to interpret these data, and their implications for earthquake rates in the western United States. Recent updates provide a much larger data set of Global Positioning System crustal velocities than used in...
Authors
Frederick Pollitz, Eileen L. Evans, Edward Field, Alexandra Hatem, Elizabeth Hearn, Kaj Johnson, Jessica Murray, Peter Powers, Zheng-Kang Shen, Crystal Wespestad, Yuehua Zeng
Unified Hazard Tool Unified Hazard Tool
Use this web application to obtain earthquake hazards data from the U.S. Hazard Model.
nshm-alaska-v2 nshm-alaska-v2
Software release of 2023 Alaska NSHM input files for use with nshmp-haz.
nshm-hawaii-v2 nshm-hawaii-v2
National Seismic Hazard Model (NSHM) for the State of Hawaii. This model is intended for use with U.S. Geological Survey (USGS) hazard software nshmp-haz.
nshm-conus-v5 nshm-conus-v5
National Seismic Hazard Model (NSHM) for the conterminous U.S. This model is intended for use with U.S. Geological Survey (USGS) hazard software nshmp-haz. This model was last updated in 2018.
nshmp-haz-v2 nshmp-haz-v2
U.S. Geological Survey (USGS) National Seismic Hazard Model Project (NSHMP) codes for performing probabilistic seismic hazard (PSHA) and related analyses. These codes are intended for use with seismic hazard models developed by the NSHMP for the U.S. and its territories. This project includes a variety of command line applications and web service classes and relies on the nshmp-lib...
nshmp-lib nshmp-lib
nshmp-lib is a USGS developed Java library that supports probabilistic seismic hazard (PSHA) and related analyses. This project includes all the code required to load, process and query USGS National Seismic Hazard Models (NSHMs). nshmp-lib is used by command line applications and web services found in the nshmp-haz project. See that project for running PSHA calculations.
nshm-fault-sections nshm-fault-sections
A repository of all geologic fault section data included in USGS National Seismic Hazard Models
nshmp-haz-v1 nshmp-haz-v1
U.S. Geological Survey (USGS) National Seismic Hazard Mapping Project (NSHMP) code for performing probabilistic seismic hazard (PSHA) and related analyses. These codes are intended for use with seismic hazard models developed by the NSHMP for the U.S. and its territories.
New USGS map shows where damaging earthquakes are most likely to occur in US New USGS map shows where damaging earthquakes are most likely to occur in US
USGS scientists and our partners recently revealed the latest National Seismic Hazard Model, showing that nearly 75% of the United States could experience a damaging earthquake, emphasizing seismic hazards span a significant part of the country.