Skip to main content
U.S. flag

An official website of the United States government

Landsat 7 ETM+ Calibration Notices

Landsat 7 Calibration Notices

Return to Calibration Notices Overview

This page describes the details of major Calibration Updates in processing or reprocessing efforts. The Landsat 7 CPF Historical Change Log contains information about the calibration coefficients that were adjusted to correct for the time varying performance of the ETM+ sensor, from January 2018 to April 2024; a link on the page leads to details about older updates. 


April 25, 2017 - ETM+ Reflectance Calibration Update in Collection 1 Processing

Beginning in August 2016, the reflectance calibration of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) has been updated to be consistent with the Landsat 8 Operational Land Imager (OLI) reflectance calibration.  The ETM+ reflectance calibration was previously tied to a model of the solar irradiance spectrum, but now it is linked to the NIST traceable OLI reflectance calibration. Users converting their Level-1 data to reflectance by applying the REFLECTANCE_MULT and REFLECTANCE_ADD parameters in the metadata file (MTL) will be making use of the updated calibration. 

This update does change the reflectance, by up to almost 4% (Table 1). The ESUN (ChKur) was used for the original reflectance calibration and ESUN (OLI) is used in the new reflectance calibration. The %Diff column shows how much the reflectance changes when using the updated calibration.

The updated reflectance calibration was propagated to the TM instruments as well. 

ETM+ Top of Atmosphere ESUN comparisons
Percent difference in the top-of-atmosphere reflectance between ETM+ Level-1 products generated using the new OLI-based reflectance calibration (ESUN(OLI)) and the original radiance calibration based on the ChKur solar spectrum (ESUN(ChKur)). (Micijevic et al, 2016)

Reference: Reference: Esad Micijevic; Md. Obaidul Haque; Nischal Mishra; Radiometric calibration updates to the Landsat collection. Proc. SPIE 9972, Earth Observing Systems XXI, 99720D (September 19, 2016); doi:10.1117/12.2239426.


September 27, 2013 - Landsat 7 Thermal Band Calibration Update

Effective October 1, 2013, the calibration of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) Thermal band 6 will be updated to correct a bias error that has been present in all thermal data since the last calibration update in 2010. Vicarious calibration teams detected a bias error of 0.036 watts per square meter steradian micron (W/(m2 sr µm)) that causes overestimation of top-of-atmosphere temperatures by approximately 0.26 Kelvin (K) at 300K. Calibration parameters within the Calibration Parameter File (CPF) have been adjusted to correct for this bias error.

All data processed by USGS/EROS from October 1, 2013 forward will be correctly calibrated within 0.4K at 300K using updated CPF coefficients. Users can correct for the bias error themselves by subtracting 0.036 W/(m2 sr µm) from the top-of-atmosphere radiance product for data products processed between January 1, 2010 and September 30, 2013.

The vicarious calibration teams, the Rochester Institute of Technology and the NASA/Jet Propulsion Laboratory, have been collecting field data coincident with the satellite overpass since the ETM+ launched in 1999. Early in the mission, an offset error of 0.31 W/(m2 sr µm) was detected [Barsi, 2003], and subsequently a correction was applied to the processing system in October 2000. Further updates were made in January 2010 [Schott, 2012] to correct a 5.8% gain error.

Continued calibration monitoring has revealed that the 2010 calibration update resulted in a small but statistically significant bias error of 0.036 W/(m2 sr µm).   The most recent October 2013 update corrects this error by adjusting the shutter view coefficient in the Calibration Parameter File (CPF).

Users can correct their own data by subtracting 0.036 W/(m2 sr µm) from the top-of-atmosphere radiance product for data products processed between Jan 1, 2010 and Sept 30, 2013.

J.A. Barsi, J.R. Schott, F.D. Palluconi, D.L. Helder, S.J. Hook, B.L. Markham, G. Chander, E.M. O’Donnell, “Landsat TM and ETM+ thermal band calibration,” Canadian Journal of Remote Sensing, 29(2), 141-153 (2003) John R. Schott, Simon J. Hook, Julia A. Barsi, Brian L. Markham, Jonathan Miller, Francis P. Padula, Nina G. Raqueno, “Thermal Infrared Radiometric Calibration of the Entire Landsat 4, 5, and 7 Archive (1982-2010).” Remote Sensing of Environment, July 2012.


March 15, 2013 - Landsat 7 Lifetime Degradation in Gains

Analysis of large, unchanging desert sites in the Sahara has shown that the gains of the ETM+ instrument have degraded over the lifetime of the sensor. The degradation has been slow, a maximum of -0.21% change per year, but over 13+ years of operation, this amounts to calibration errors of up to 2.8%. The degradation is significant in all reflective bands.

The effect of the degradation is to make targets appear darker over time. For example, in the Blue band, a 30% reflector in 1999 would appear to have a reflectance of 29.5% in 2006 and 29.2% in 2012.

Landsat 7 ETM+ Effect of Gain Degradation Over Time
Landsat 7 ETM+ Effect of Gain Degradation Over Time

Our current, best estimates of the gain change come from the ETM+ lifetime response to path 181 row 40, encompassing the Libya-4 site (referenced in Cosnefroy et al. 1996). The gains are modeled as linear functions of time. The gain changes below are listed here as percent (of the starting gain) change per year along with a 2-sigma uncertainty and the degradation in percentage over the lifetime (relative to the current CPF):

Landsat 7 ETM+ Gain Change Values
Landsat 7 ETM+ Gain Change Values

A more detailed description of the processing and analysis can be found in the proceedings of IGARSS 2012, though the numbers here are slightly different due to number of data points being used in the final assessment.

As of April 1, 2013, Landsat 7 processing will correct data for this degradation.

H. Cosnefroy, M. Leroy, and X. Briottet, "Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors," Remote Sensing of Environment, Vol. 58, pp. 101-114, 1996.

Barsi, Markham, Helder. "In Flight Calibration of Optical Satellite Sensors Using Pseudo Invariant Calibration Sites" IGARSS 2012, Munich, Germany, July 22-27, 2012.


January 28, 2010 - Landsat 7 Thermal Band Calibration Update

Effective January 1, 2010, the calibration of the ETM+ thermal band was modified to correct for a lifetime gain error detected by the vicarious calibration teams. Changes were made to the Calibration Parameter File (CPF) to correct a gain error that has been present since the launch of the instrument. This gain error causes the thermal band to predict too hot at cold temperatures and too cold at hot temperatures. For instance, a target with an at-satellite temperature of 0C will appear to be 0.8C based on the image data and a target with an at-satellite temperature of 27C will appear to be 26.3C. The error at 12C is approximately 0C. The vicarious calibration data were used to generate a correction to the calibration and the corrected coefficients were implemented in the processing system on Jan 1, 2010. All data processed by the USGS/EROS processing system after Jan 1, 2010 are correctly calibrated.

The vicarious calibration teams, the Rochester Institute of Technology and the NASA/Jet Propulsion Laboratory, have been collecting data under the satellite since the instrument launched in 1999. Early in the mission, they detected an offset error of 0.31 W/m2 sr um [Barsi, 2003]. This was corrected in the processing system in October 2000. Since then, the teams have continued to collect field data. The addition of a site on the Salton Sea, which can get as hot as 35C in the summer, expanded the temperature range over which the teams acquired ground truth. With these hot points, a gain error of 5.8% became statistically significant. The effect of this gain error is that the instrument was estimating that hot targets were too cold and cold targets were too hot. See the table below for estimates of the error on specific target temperatures.

The error was corrected by adjusting the internal-to-external gain ratio in the Calibration Parameter File (CPF). Other parameters needed to be adjusted for non-default processing conditions, but for most users, the internal-to-external gain ratio is the only parameter that will affect the product. Users should note that with the current distribution system, the downloadable product may not have been processed with the latest CPF. Please check the "Product Creation Time" in the metadata file (MTL) that comes with the downloaded product to ensure that the product is processed after January 1, 2010.

This update will be modified when the correction is published in an official paper.

The error estimates for at-satellite radiances are shown in the table below. The error varies with target temperature with the satellite estimating too hot for cold targets and too cold for hot targets.

Target Temperature Approximate Radiance 
[W/m2 sr µm]
Estimated Calibration Error
273K / 0C 6.0 0.8 too hot
285K / 12C 7.5 0
300K / 27C 9.0 0.7 too cold

J.A. Barsi, J.R. Schott, F.D. Palluconi, D.L. Helder, S.J. Hook, B.L. Markham, G. Chander, E.M. O'Donnell, "Landsat TM and ETM+ thermal band calibration," Canadian Journal of Remote Sensing, 29(2), 141-153 (2003)


April 1, 2007 - Landsat 7 CPF Format for Bumper Mode Update

On April 1, 2007, the Landsat 7 mission began imaging in an alternate mirror-scanning control mode from the original Scan Angle Monitor (SAM) process that has been used since the satellite was launched in 1999. This change, known as Bumper Mode, was necessary due to a predictable physical wear of the mirror bumpers mounted within the ETM+ sensor. Landsat 7 data users should notice little or no change as a result of this transition. Five years ago, the Landsat 5 Thematic Mapper (TM) scanner was successfully converted to this alternate imaging mode, and customers have reported no problems related to that change. 

The Landsat 7 ETM+ Calibration Parameter File (CPF) format was updated to include several new parameters and groups, in support of the L7 ETM+ change to bumper mode operations. 


January 2, 2003 - Landsat 7 Thermal Band Calibration Update

In September 2000, two Landsat 7 science team investigator groups reported a bias of 0.31 w/(m^2 sr um) in the calibration of Band 6 of the Enhanced Thematic Mapper Plus (ETM+). To compensate for this bias, the following occurred with the October 1, 2000 release of the CPFs:

  • The Band 6 Thermal calibration processing in the Landsat Product Generation System (LPGS) and Image Assessment System (IAS) was revised
  • The Calibration Parameter File (CPF) values were revised
  • The calibration equation used by IAS/LPGS was modified
  • The instrument component view coefficients were corrected
  • The Band 6 biases were corrected

Users need to be aware of which changes were made and how these changes might affect the distributed data.

The software change that incorporated the Band 6 bias calibration fix was installed in the IAS system October 30, 2000, and in the LPGS system December 20, 2000. Because the National Landsat Archive Production System (NLAPS) relies on the CPF for Band 6 bias calculation, NLAPS was corrected with the October 1, 2000 release of the CPFs. Data processed after these dates are calibrated correctly. For data processed before these dates, subtract 0.31 W/(m^2 sr um) from the L1 image radiance to get calibrated radiance.

Note that the distinction between calibrated and non-calibrated data is based on processing date. This has no relation to the acquisition date (the date that the ETM+ acquired the image). Data acquired before 01-Oct-00 but processed after the calibration correction are calibrated correctly.

For users of other processing system Band 6 products, the effect depends on the calibration equation used for processing. (1) If the CPF gains and CPF biases are used for normal operational processing, this calibration correction occurs immediately on all images ordered. (2) If the original calibration equation used the shutter view factor (Vsh) (and IC biases are used), the new Vsh values have an effect, although the specific implementation of Vsh varies and has differing effects. Because only the IAS and LPGS were developed under the Landsat Project Science Office, other processing software is not under configuration and verification control. In addition, when changes are made to LPGS software, other processing systems are under no obligation to make similar changes to their software, so other systems may never implement new calibration methods.

Summary of Changes

Update to the CPF (view coefficients and biases):

A number of coefficients were determined during the prelaunch calibration of ETM+, including the view factors of the individual instrument components and the ratio between the internal and external gain. Based on the error in calibration, the prelaunch data are now considered suspect. Therefore, it was decided to empirically re-calculate one of the coefficients to correct the bias. Also during this time, the groups observed that the Vsh was not used correctly in the calibration software algorithms. This algorithm was corrected, and Vsh is the coefficient that was empirically adjusted to yield a 0.31 w/(m^2 sr um) lower bias.

Biases: Accompanying this change in Vsh was a change in the CPF biases. This is the simplest way to adjust for the bias error, but the LPGS processing system defaults to using the IC as the bias source. The LPGS only uses these biases for special requests. However, other processing systems may use them, so updating them was necessary. The biases were adjusted by determining the DN equivalent of the 0.31 w/(m^2 sr um) radiance change from the current gain, then adjusting the bias by that amount.

Update of the Calibration Equation

The processing software originally used a calibration equation that relied heavily on information collected through prelaunch tests. Because the prelaunch calibration results are believed to be the cause of this bias error, the calibration equation was simplified to its most basic form.

Lsc = (Qsc - Qsh) / RGi + (Vsh/R)Lsh - sum(ajLj)

In the ideal situation, new on-orbit data will be collected with the instrument sitting at a range of temperatures so the ajs, Vsh, and R can be re-derived. Until that opportunity becomes available, the solution is to re-solve for Vsh based on the ground look calibration that the science team members already perform; keeping the result of the equation the same as the current equation:

Vsh(CPF) = R ( Vsh(emp) + sum(aj) )


Vsh(CPF) is the new Vsh that will be put in the CPF.

Vsh(emp) is the Vsh solved for when the ground truth data is used

This new equation was implemented in IAS 4.3 (Oct 30, 2000), LPGS 4.1 (December 20, 2000), and NLAPS (October 1, 2000). Band 6 data processed on or after those dates are correct and need no adjustment. For data processed before those dates, adjust the calibrated radiances by subtracting 0.31 W/(m^2 sr um).


December 31, 2001 - Landsat 7 Calibration Parameter File Changes

Changes to the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) from prelaunch to December 2001 are noted on the table below.

Year Quarter CPF Changes IAS Changes
1999 1 Prelaunch CPF values calculated from tests at Santa Barbara Remote Sensing (SBRS) Santa Barbara and Valley Forge. IAS 3.2 released 4/15/1999
2 Mirror_Parameters, Histogram/Starting_pixel, Window_Samples,  B6_View_Coeffs, Thermistor_Coeffs, Thermal_Constants N/A
3 Detector_Noise (B8), Detector_Biases_B6, ACCA_Thresholds, ACCA_Biases, IN_Thresholds, Scaling_Parameters, MTF_Compensation IAS 3.2.1 released 8/25/1999
4 Detector_gains, Detector_Biases_B6, ACCA_Biases, MTF_Compensation, B6_view_coeffs, Mirror_Parameters, ACCA_Bias, Emergency CPF Release: Band 6 Gain Switch Event 11/24/1999 - 12/08/1999 IAS 3.2.2 released 10/20/1999 
Destriping fixed, Partial Aperture Solar Calibrators (PASCs) enabled, Payload Correction Data (PCD) Attitude preprocessing algorithms updated, Upgrade to Oracle 7.3.4

IAS 4.0 released 11/24/1999
2000 1 Det_Shutter_noise, IN Thresholds, CPF Structure Changes Made 2/16/2000, added Histogram/Det_Shutter_Noise, added Impulse_Noise/IN_SIGMA_Threshold, added Attitude_Parameters/IMU_Drift_Biases, enabled per-band Striping correction parameters IAS 4.1 released 2/16/2000 
Band 6 Bias Calculation fixed, Relative Gain correction fixed, Upgrade to IRIX 6.5
2 Mirror_parameters, Detector_gains, Striping references N/A
3 Mirror_parameters, Detector_gains, ACCA_Thresholds, Scaling_parameters, Emergency CPF Release: CSA Alignment Change 7/19/2000 IAS 4.2 released 7/12/2000
IMU_Drift_Bias parameters enabled, Per-band Striping correction enabled, Per-band Relative Gain calculation enabled, Can now use Definitive Ephemeris
4 N/A IAS 4.3 Released 10/31/2000 
Full Aperture Solar Calibrator (FASC) processing enabled, Band 6 Random Noise calculation fixed, FDF Ephemeris fixed
2001 1 ACCA_Thresholds, Impulse_noise thresholds IAS 4.4 Released 2/6/2001
FASC processing fixed, IN_Sigma_Threshold parameters enabled
2 N/A IAS 4.5 Released 4/3/2001
Zero-frequency Coherent Noise (CN) eliminated, FASC processing fixed, Det_Shutter_Noise parameters enabled, Mission Operations Center (MOC) Auto-generated PASC Requests,

IAS 5.0 Released 5/31/2001
3 Detector Gains (B6), Detector_Biases_B6, ACCA_Biases N/A
4 Attitude_Parameters, Detector Gains (B7),  Bias Locations, MTF_Compensation IAS 5.1 Released 10/9/2001
PASC Glint numbering corrected, Geographic Tagged Image File Format (GEOTiff) and FastL7 output enabled, Upgraded to Oracle 8.1.7.


September 1, 2000 - Landsat 7 Thermal Band Calibration Analysis

Analysis conducted by two Landsat 7 Science Team investigator groups using ground and aircraft measurements indicated a bias in the Thermal band (Band 6) calibration of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) Level-1 (L1) data processed by the Landsat Product Generation System (LPGS) at the USGS Earth Resources Observation and Science (EROS) Center. This bias apparently results from limitations in the prelaunch calibration of the ETM+ sensor.

The magnitude of the correction is currently estimated to be 0.31 W/(m^2 sr um) or about 3-4 percent radiance error at typical surface temperatures. This apparent systematic error in band 6 radiance calibration translates into estimated temperatures derived from Landsat 7 ETM+ being about 3 degrees C too high for typical Earth surface temperatures.

The current recommended correction is for users to subtract this value (0.31 W/(m^2 sr mm)) from the radiances obtained from Level-1 Radiometrically Corrected (L1R) and Level-1 Geometrically Corrected (L1G) data products generated since launch by the LPGS for both high and low gain band 6 data. Results to date indicate the sensor and calibration are stable with time and that this bias correction is a constant. The Landsat Image Assessment System (IAS) team at EROS, Landsat 7 Science Office Personnel at Goddard Space Flight Center (GSFC) and the Science Team Members are examining ways to improve the calibration in the processing system.


November 24, 1999 - Landsat 7 Thermal Band Gain Switch Event

On November 24, 1999 at 00:37:37Z, an incorrect command to the Landsat 7 spacecraft caused the Enhanced Thematic Mapper Plus (ETM+) to switch gain states for Band 6. As the only band that uses both formats, Band 6 Low Gain data normally processes through Format 1, while Band 6 High Gain data normally processes through Format 2. The incorrect command load reversed this arrangement; Format 1 became High Gain, while Format 2 became Low Gain. The original gain settings were restored on December 8th at 16:01:15Z.

Data during this event was reprocessed with an Event-Specific Calibration Parameter File (CPF), and cannot be not be processed to Level-1 by Image Assessment System (IAS) software, and may have incorrect Automated Cloud Cover Assessment (ACCA) scores.

Switching the gains in Band 6 is not a simple matter of substituting Format 1 for Format 2. Different detectors and circuitry are used in the different formats, so the calibration of a gain state in one format does not relate to its calibration in another format. Essentially, two new bands were created by switching the gain states, both of an intermediate gain between High and Low, and both of which were unstudied and uncalibrated at the time of the event.

However, these data cannot be processed to Level-1 with the existing CPF and the current IAS software. The current version of the IAS software makes assumptions about the gain state of Band 6 data, and processing this data to Level-1 Geometrically Corrected (L1G) leads to corrupted imagery.

The High Gain data has striping in the L1Gs 'corrected' image. The Low Gain data is totally saturated, having been scaled to inappropriate values.

The Level-0 data for both formats should be considered to be in new, intermediate gain states. The gain states for the Band 6 data are correctly marked in the L0R metadata. This data should only be processed using the Event-Specific CPF.

In addition, because the Automated Cloud Cover Assessment system uses Band 6 data, the ACCA score for scenes during this event may be incorrect.