Nitrogen in the Chesapeake Bay Watershed: A Century of Change
Detailed Description
Narrated presentation that provides a unique, long-term perspective (1950-2050) of the major drivers of nitrogen change up to the present, and forecasts how they may affect nitrogen into the future for the Chesapeake Bay watershed. Information is based off of U.S. Geological Survey Circular 1486.
Details
00:19:43
Sources/Usage
Public Domain.
Video thumbnail courtesy of the Chesapeake Bay Program, with aerial support by LightHawk, used with permission.
Related
Nitrogen in the Chesapeake Bay watershed—A century of change, 1950–2050
ForewordSustaining the quality of the Nation’s water resources and the health of our diverse ecosystems depends on the availability of sound water-resources data and information to develop effective, science-based policies. Effective management of water resources also brings more certainty and efficiency to important economic sectors. Taken together, these actions lead to immediate and long-term e
Authors
John W. Clune, Paul D. Capel, Matthew P. Miller, Douglas A. Burns, Andrew J. Sekellick, Peter R. Claggett, Richard H. Coupe, Rosemary M. Fanelli, Ana Maria Garcia, Jeff P. Raffensperger, Silvia Terziotti, Gopal Bhatt, Joel D. Blomquist, Kristina G. Hopkins, Jennifer L. Keisman, Lewis C. Linker, Gary W. Shenk, Richard A. Smith, Alexander M. Soroka, James S. Webber, David M. Wolock, Qian Zhang
Science to Inform Management Priorities from Loads to Endpoints (SIMPLE)
Resource managers are working to improve water-quality in the Chesapeake to benefit the people who live in the region and the birds, fish, and other animals who rely on clean water in the watershed and the Bay. The U.S Geological Survey (USGS) supports resource managers and other Chesapeake stakeholders by providing science that informs restoration and conservation in the Chesapeake region. The...
Greatest Opportunities for Future Nitrogen Reductions to the Chesapeake Bay Watershed are in Developed and Agricultural Areas
Issue: As human population has increased, land-use changes have led to increases in nutrients (nitrogen and phosphorus) and sediment into the Bay. The excess nutrients cause algal blooms which contribute to water-quality impairments such as low oxygen or hypoxia (dead zones), and poor water clarity in the Chesapeake Bay. Management efforts to improve water quality focus on dissolved oxygen needed...
Related
Nitrogen in the Chesapeake Bay watershed—A century of change, 1950–2050
ForewordSustaining the quality of the Nation’s water resources and the health of our diverse ecosystems depends on the availability of sound water-resources data and information to develop effective, science-based policies. Effective management of water resources also brings more certainty and efficiency to important economic sectors. Taken together, these actions lead to immediate and long-term e
Authors
John W. Clune, Paul D. Capel, Matthew P. Miller, Douglas A. Burns, Andrew J. Sekellick, Peter R. Claggett, Richard H. Coupe, Rosemary M. Fanelli, Ana Maria Garcia, Jeff P. Raffensperger, Silvia Terziotti, Gopal Bhatt, Joel D. Blomquist, Kristina G. Hopkins, Jennifer L. Keisman, Lewis C. Linker, Gary W. Shenk, Richard A. Smith, Alexander M. Soroka, James S. Webber, David M. Wolock, Qian Zhang
Science to Inform Management Priorities from Loads to Endpoints (SIMPLE)
Resource managers are working to improve water-quality in the Chesapeake to benefit the people who live in the region and the birds, fish, and other animals who rely on clean water in the watershed and the Bay. The U.S Geological Survey (USGS) supports resource managers and other Chesapeake stakeholders by providing science that informs restoration and conservation in the Chesapeake region. The...
Greatest Opportunities for Future Nitrogen Reductions to the Chesapeake Bay Watershed are in Developed and Agricultural Areas
Issue: As human population has increased, land-use changes have led to increases in nutrients (nitrogen and phosphorus) and sediment into the Bay. The excess nutrients cause algal blooms which contribute to water-quality impairments such as low oxygen or hypoxia (dead zones), and poor water clarity in the Chesapeake Bay. Management efforts to improve water quality focus on dissolved oxygen needed...