The Delta of the Sacramento and San Joaquin rivers provides drinking water supplies to two-thirds of Californians, and is a fragile ecosystem home to threatened and endangered species. The CASCaDE project builds on several decades of USGS science to address the goals of achieving water supply reliability and restoring the ecosystems in the Bay-Delta system.
The Delta of the Sacramento and San Joaquin rivers, at the upstream end of the San Francisco Bay-Delta estuary, is home to vital ecosystems that provide habitat for many endangered species and that serve as an important stop on the Pacific Flyway for migratory birds. The Delta provides drinking water supplies to two-thirds of Californians and is a major source of water for California agriculture.
The health of the estuary’s ecosystem has long been in decline. Continued subsidence of Delta islands, in conjunction with sea-level rise and the likelihood of major earthquakes, threatens hundreds of miles of fragile levees. As a result, the Delta’s ecosystem and the role of its waterways as a central conduit for large-scale infrastructure that transports fresh water from northern California to southern California are vulnerable. Failure of the Delta to sustain its ecological and freshwater supply services would be catastrophic for California, with economic impacts extending to the national level.
In response to these challenges, California passed the Sacramento-San Joaquin Delta Reform Act in 2009 with the coequal goals of achieving water supply reliability and restoring the Delta’s ecosystem. However, critical gaps in our understanding of how the Delta may respond to major climate and infrastructure changes over the next several decades complicate decisions about how to achieve these goals. Assessing the effects of likely climate and infrastructure changes on this system is essential to making informed and robust planning decisions.
The Computational Assessments of Scenarios of Change for the Delta Ecosystem (CASCaDE) project was conceived to build on several decades of USGS science in this system to address this need. Multiple scientists are using linked models to evaluate the implications of a range of future scenarios on various aspects of the Bay-Delta and its watershed.
Code, Configuration Files, and Additional Data
- The hydrodynamic model can be accessed at www.d3d-baydelta.org.
- San Francisco Bay-Delta bathymetric/topographic digital elevation model (DEM)
- Data and Associated Code for Projections of Unimpaired Flows, Storage, and Managed Flows for Climate Change Scenarios in the San Francisco Bay-Delta Watershed, California
Updates
August 27, 2020: A paper describing the results of CASCaDE 2 modeling of the response of suspended sediment transport in the Sacramento watershed was published in (link).
October 12, 2018: A paper describing the results of CASCaDE 2 watershed hydrology and operations modeling was published in Water Resources Research (link). We also recently published a related report describing our methods and models in detail, and a data-and-code release that includes all of the code we developed for this project and the relevant data produced.
August 27, 2018: A report describing the meteorological and sea-level projections used in CASCaDE2 has been released as part of the Fourth California Climate Change Assessment (link).
July 1, 2018: Configuration files for the 2-D and 3-D versions of the D-Flow FM hydrodynamic model are available at d3d-baydelta.org. Instructions for obtaining the source code are also at that site.
October 1, 2017: A paper describing the application of the CASCaDE2 hydrodynamical model to the simulation of historical water temperatures has been published in Water Resources Research (link).
June 22, 2017: A report describing the seamless bathymetric/topographic DEM developed for the CASCaDE2 hydrodynamical model has been released (link).
June 5, 2017: A paper describing the new CASCaDE2 hydrodynamical model and its application to historical flows and salinity has been published in Estuarine, Coastal, and Shelf Science (link).
April 2017: A publication exploring responses of estuarine suspended sediment dynamics to scenarios of changing climate and alterations to engineered water conveyance structures (link to Achete et al. 2017 Climatic Change; https://link.springer.com/article/10.1007/s10584-017-1954-8)
February 2017: A publication describing a laboratory analysis method enabling Selenium sample analysis supporting CASCaDE modeling work (link to Kleckner et al. 2017, L&O Methods; https://aslopubs.onlinelibrary.wiley.com/doi/full/10.1002/lom3.10164)
May 14, 2016: A paper describing the watershed sediment model developed for CASCaDE2 has been published in Water (link).
March 2016: A publication describing suspended sediment dynamics in a tidal channel network under peak river flow based on a 2D numerical model (link to Achete et al. 2016 Ocean Dynamics; https://link.springer.com/article/10.1007/s10236-016-0944-0)
Older items
At the conclusion of external funding from the Delta Stewardship Council (DSC), we produced a summary report. Although the project term with DSC funding is over, work continues on CASCaDE2. Additional materials follow:
Below are data or web applications associated with this project.
San Francisco Bay Delta Bathymetric/Topographic digital elevation model (DEM) - 2016 SF Bay Delta DEM 10-m
Below are publications associated with this project.
The future of sediment transport and streamflow under a changing climate and the implications for long-term resilience of the San Francisco Bay-Delta
Modeling managed flows in the Sacramento/San Joaquin watershed, California, under scenarios of future change for CASCaDE2
What determines water temperature dynamics in the San Francisco Bay-Delta system?
How can climate change and engineered water conveyance affect sediment dynamics in the San Francisco Bay-Delta system?
A new seamless, high-resolution digital elevation model of the San Francisco Bay-Delta Estuary, California
Application of an unstructured 3D finite volume numerical model to flows and salinity dynamics in the San Francisco Bay-Delta
A practical method for the determination of total selenium in environmental samples using isotope dilution-hydride generation-inductively coupled plasma-mass spectrometry
Characterizing changes in streamflow and sediment supply in the Sacramento River Basin, California, using hydrological simulation program—FORTRAN (HSPF)
Estimation of historic flows and sediment loads to San Francisco Bay,1849–2011
Coupled downscaled climate models and ecophysiological metrics forecast habitat compression for an endangered estuarine fish
A 2-D process-based model for suspended sediment dynamics: A first step towards ecological modeling
Storage in California’s reservoirs and snowpack in this time of drought
- Overview
The Delta of the Sacramento and San Joaquin rivers provides drinking water supplies to two-thirds of Californians, and is a fragile ecosystem home to threatened and endangered species. The CASCaDE project builds on several decades of USGS science to address the goals of achieving water supply reliability and restoring the ecosystems in the Bay-Delta system.
CASCaDE2 modeling flowchart showing the system of linked models being used to evaluate scenarios of climate and infrastructure change. The light blue background indicates a framework of mutually compatible models developed by Deltares and USGS and applied by CASCaDE2 team members to the Bay-Delta. The Delta of the Sacramento and San Joaquin rivers, at the upstream end of the San Francisco Bay-Delta estuary, is home to vital ecosystems that provide habitat for many endangered species and that serve as an important stop on the Pacific Flyway for migratory birds. The Delta provides drinking water supplies to two-thirds of Californians and is a major source of water for California agriculture.
The health of the estuary’s ecosystem has long been in decline. Continued subsidence of Delta islands, in conjunction with sea-level rise and the likelihood of major earthquakes, threatens hundreds of miles of fragile levees. As a result, the Delta’s ecosystem and the role of its waterways as a central conduit for large-scale infrastructure that transports fresh water from northern California to southern California are vulnerable. Failure of the Delta to sustain its ecological and freshwater supply services would be catastrophic for California, with economic impacts extending to the national level.
In response to these challenges, California passed the Sacramento-San Joaquin Delta Reform Act in 2009 with the coequal goals of achieving water supply reliability and restoring the Delta’s ecosystem. However, critical gaps in our understanding of how the Delta may respond to major climate and infrastructure changes over the next several decades complicate decisions about how to achieve these goals. Assessing the effects of likely climate and infrastructure changes on this system is essential to making informed and robust planning decisions.
The Computational Assessments of Scenarios of Change for the Delta Ecosystem (CASCaDE) project was conceived to build on several decades of USGS science in this system to address this need. Multiple scientists are using linked models to evaluate the implications of a range of future scenarios on various aspects of the Bay-Delta and its watershed.
Code, Configuration Files, and Additional Data
- The hydrodynamic model can be accessed at www.d3d-baydelta.org.
- San Francisco Bay-Delta bathymetric/topographic digital elevation model (DEM)
- Data and Associated Code for Projections of Unimpaired Flows, Storage, and Managed Flows for Climate Change Scenarios in the San Francisco Bay-Delta Watershed, California
Updates
August 27, 2020: A paper describing the results of CASCaDE 2 modeling of the response of suspended sediment transport in the Sacramento watershed was published in (link).
October 12, 2018: A paper describing the results of CASCaDE 2 watershed hydrology and operations modeling was published in Water Resources Research (link). We also recently published a related report describing our methods and models in detail, and a data-and-code release that includes all of the code we developed for this project and the relevant data produced.
August 27, 2018: A report describing the meteorological and sea-level projections used in CASCaDE2 has been released as part of the Fourth California Climate Change Assessment (link).
July 1, 2018: Configuration files for the 2-D and 3-D versions of the D-Flow FM hydrodynamic model are available at d3d-baydelta.org. Instructions for obtaining the source code are also at that site.
October 1, 2017: A paper describing the application of the CASCaDE2 hydrodynamical model to the simulation of historical water temperatures has been published in Water Resources Research (link).
June 22, 2017: A report describing the seamless bathymetric/topographic DEM developed for the CASCaDE2 hydrodynamical model has been released (link).
June 5, 2017: A paper describing the new CASCaDE2 hydrodynamical model and its application to historical flows and salinity has been published in Estuarine, Coastal, and Shelf Science (link).
April 2017: A publication exploring responses of estuarine suspended sediment dynamics to scenarios of changing climate and alterations to engineered water conveyance structures (link to Achete et al. 2017 Climatic Change; https://link.springer.com/article/10.1007/s10584-017-1954-8)
February 2017: A publication describing a laboratory analysis method enabling Selenium sample analysis supporting CASCaDE modeling work (link to Kleckner et al. 2017, L&O Methods; https://aslopubs.onlinelibrary.wiley.com/doi/full/10.1002/lom3.10164)
May 14, 2016: A paper describing the watershed sediment model developed for CASCaDE2 has been published in Water (link).
March 2016: A publication describing suspended sediment dynamics in a tidal channel network under peak river flow based on a 2D numerical model (link to Achete et al. 2016 Ocean Dynamics; https://link.springer.com/article/10.1007/s10236-016-0944-0)
Older items
At the conclusion of external funding from the Delta Stewardship Council (DSC), we produced a summary report. Although the project term with DSC funding is over, work continues on CASCaDE2. Additional materials follow:
- Data
Below are data or web applications associated with this project.
San Francisco Bay Delta Bathymetric/Topographic digital elevation model (DEM) - 2016 SF Bay Delta DEM 10-m
A high-resolution (10-meter per pixel) digital elevation model (DEM) was created for the Sacramento-San Joaquin Delta using both bathymetry and topography data. This DEM is the result of collaborative efforts of the U.S. Geological Survey (USGS) and the California Department of Water Resources (DWR). The base of the DEM is from a 10-m DEM released in 2004 and updated in 2005 (Foxgrover and others, - Publications
Below are publications associated with this project.
Filter Total Items: 47The future of sediment transport and streamflow under a changing climate and the implications for long-term resilience of the San Francisco Bay-Delta
Sedimentation and turbidity have effects on habitat suitability in the San Francisco Bay‐Delta (Bay‐Delta), concerning key species in the bay as well as the ability of the delta marshes to keep pace with sea level rise. A daily rainfall runoff and transport model of the Sacramento River Basin of northern California was developed to simulate streamflow and suspended sediment transport to the Bay‐DeModeling managed flows in the Sacramento/San Joaquin watershed, California, under scenarios of future change for CASCaDE2
Projections of managed flows from the Sacramento River/San Joaquin River watershed, California, into the San Francisco Bay and Sacramento-San Joaquin Delta under scenarios of future climate change are needed for evaluations of potential impacts on water supply and estuarine ecosystems. A new, multiple-model approach for achieving this is described. First, downscaled global climate model outputs arWhat determines water temperature dynamics in the San Francisco Bay-Delta system?
Water temperature is an important factor determining estuarine species habitat conditions. Water temperature is mainly governed by advection (e.g., from rivers) and atmospheric exchange processes varying strongly over time (day-night, seasonally) and the spatial domain. On a long time scale, climate change will impact water temperature in estuarine systems due to changes in river flow regimes, airHow can climate change and engineered water conveyance affect sediment dynamics in the San Francisco Bay-Delta system?
Suspended sediment concentration is an important estuarine health indicator. Estuarine ecosystems rely on the maintenance of habitat conditions, which are changing due to direct human impact and climate change. This study aims to evaluate the impact of climate change relative to engineering measures on estuarine fine sediment dynamics and sediment budgets. We use the highly engineered San FranciscA new seamless, high-resolution digital elevation model of the San Francisco Bay-Delta Estuary, California
Climate change, sea-level rise, and human development have contributed to the changing geomorphology of the San Francisco Bay - Delta (Bay-Delta) Estuary system. The need to predict scenarios of change led to the development of a new seamless, high-resolution digital elevation model (DEM) of the Bay – Delta that can be used by modelers attempting to understand potential future changes to the estuaApplication of an unstructured 3D finite volume numerical model to flows and salinity dynamics in the San Francisco Bay-Delta
A linked modeling approach has been undertaken to understand the impacts of climate and infrastructure on aquatic ecology and water quality in the San Francisco Bay-Delta region. The Delft3D Flexible Mesh modeling suite is used in this effort for its 3D hydrodynamics, salinity, temperature and sediment dynamics, phytoplankton and water-quality coupling infrastructure, and linkage to a habitat suitA practical method for the determination of total selenium in environmental samples using isotope dilution-hydride generation-inductively coupled plasma-mass spectrometry
A safe, practical, and accurate method for the determination of selenium (Se) in range of environmental samples was developed. Small sample masses, 5–20 mg, were amended with 82Se enriched isotope for the isotope dilution (ID), preceding a multi-step wet digestion with nitric acid (HNO3) and hydrogen peroxide (H2O2). Samples were incubated in an autoclave for 3 h at 20 psi and 126°C. Digestates weCharacterizing changes in streamflow and sediment supply in the Sacramento River Basin, California, using hydrological simulation program—FORTRAN (HSPF)
A daily watershed model of the Sacramento River Basin of northern California was developed to simulate streamflow and suspended sediment transport to the San Francisco Bay-Delta. To compensate for sparse data, a unique combination of model inputs was developed, including meteorological variables, potential evapotranspiration, and parameters defining hydraulic geometry. A slight decreasing trend ofEstimation of historic flows and sediment loads to San Francisco Bay,1849–2011
River flow and sediment transport in estuaries influence morphological development over decadal and century time scales, but hydrological and sedimentological records are typically too short to adequately characterize long-term trends. In this study, we recover archival records and apply a rating curve approach to develop the first instrumental estimates of daily delta inflow and sediment loads toCoupled downscaled climate models and ecophysiological metrics forecast habitat compression for an endangered estuarine fish
Climate change is driving rapid changes in environmental conditions and affecting population and species’ persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning.A 2-D process-based model for suspended sediment dynamics: A first step towards ecological modeling
In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enablinStorage in California’s reservoirs and snowpack in this time of drought
The San Francisco Bay and Sacramento–San Joaquin Delta (Delta) are the recipients of inflows from a watershed that spans much of California and that has ties to nearly the entire state. Historically, California has buffered its water supplies and flood risks both within—and beyond—the Delta’s catchment by developing many reservoirs, large and small, high and low. Most of these reservoirs carry wat