New Knowledge on the Fate and Transport of Emerging Contaminants in Rivers
A detergent degradation product (4-nonylphenol) and a biogenic hormone (17β-estradiol) added to the Redwood River, Minnesota, were attenuated by biodegradation and other natural processes. These are the findings of a team of U.S. Geological Survey (USGS) and University of Colorado scientists.
The findings, published in Environmental Science and Technology, were based on an experiment in a 10-kilometer (6.2-mile) stretch of the Redwood River. The scientists added a florescent dye, a conservative tracer (bromide), and a small amount of the two emerging contaminants being studied to a part of the river that received discharge from a wastewater treatment plant; the discharge already contained the two contaminants. The water was sampled as it moved downstream to evaluate the chemical and hydrologic processes that reduced the concentrations of these chemicals in the stream. The scientists found that several processes were responsible for the attenuation of the two compounds. In the case of 4-nonylphenol, photolysis, biodegradation, and sorption likely are the dominant attenuation mechanisms controlling its fate in the river. For 17β-estradiol, attenuation was attributed primarily to sorption and biodegradation by bed sediments and a coating of algae and other organic material (biofilm) on the bottom of the river. Because sorption occurs more rapidly than biodegradation, these compounds will bioaccumulate in biofilms, which are an important source of food for stream food webs. Because these compounds were transported kilometers downstream during the slow attenuation process, the additive concentrations from multiple sources and the transformation of parent compounds into degradates (such as detergent compounds into 4-nonylphenol) can explain their environmental persistence.
This study was funded by the USGS Toxic Substances Hydrology Program, USGS Hydrologic Research and Development Program, University of Colorado, and National Science Foundation (Grant CBET-0854527)
Related science listed below.
Recovery of Stream and Adjacent Groundwater After Wastewater Treatment Facility Closure
Complex Mixtures, Complex Responses—Using Comprehensive Approaches to Assess Pharmaceutical Effects on Fish
Chemicals Found in Treated Wastewater are Transported from Streams to Groundwater
Neuroactive Pharmaceuticals in Minnesota Rivers
Hormones Degrade in the Environment!
Antidepressants in Stream Waters! Are They in the Fish Too?
Manufacturing Facilities Release Pharmaceuticals to the Environment
National Reconnaissance of Pharmaceuticals, Hormones and Other Organic Wastewater Contaminants in U.S. Streams is Making an Impact
National Reconnaissance of Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in Streams Named as One of the Top 100 Science Stories of the Year
Related publications listed below.
Fate of 4-nonylphenol and 17β-estradiol in the Redwood River of Minnesota
A detergent degradation product (4-nonylphenol) and a biogenic hormone (17β-estradiol) added to the Redwood River, Minnesota, were attenuated by biodegradation and other natural processes. These are the findings of a team of U.S. Geological Survey (USGS) and University of Colorado scientists.
The findings, published in Environmental Science and Technology, were based on an experiment in a 10-kilometer (6.2-mile) stretch of the Redwood River. The scientists added a florescent dye, a conservative tracer (bromide), and a small amount of the two emerging contaminants being studied to a part of the river that received discharge from a wastewater treatment plant; the discharge already contained the two contaminants. The water was sampled as it moved downstream to evaluate the chemical and hydrologic processes that reduced the concentrations of these chemicals in the stream. The scientists found that several processes were responsible for the attenuation of the two compounds. In the case of 4-nonylphenol, photolysis, biodegradation, and sorption likely are the dominant attenuation mechanisms controlling its fate in the river. For 17β-estradiol, attenuation was attributed primarily to sorption and biodegradation by bed sediments and a coating of algae and other organic material (biofilm) on the bottom of the river. Because sorption occurs more rapidly than biodegradation, these compounds will bioaccumulate in biofilms, which are an important source of food for stream food webs. Because these compounds were transported kilometers downstream during the slow attenuation process, the additive concentrations from multiple sources and the transformation of parent compounds into degradates (such as detergent compounds into 4-nonylphenol) can explain their environmental persistence.
This study was funded by the USGS Toxic Substances Hydrology Program, USGS Hydrologic Research and Development Program, University of Colorado, and National Science Foundation (Grant CBET-0854527)
Related science listed below.
Recovery of Stream and Adjacent Groundwater After Wastewater Treatment Facility Closure
Complex Mixtures, Complex Responses—Using Comprehensive Approaches to Assess Pharmaceutical Effects on Fish
Chemicals Found in Treated Wastewater are Transported from Streams to Groundwater
Neuroactive Pharmaceuticals in Minnesota Rivers
Hormones Degrade in the Environment!
Antidepressants in Stream Waters! Are They in the Fish Too?
Manufacturing Facilities Release Pharmaceuticals to the Environment
National Reconnaissance of Pharmaceuticals, Hormones and Other Organic Wastewater Contaminants in U.S. Streams is Making an Impact
National Reconnaissance of Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in Streams Named as One of the Top 100 Science Stories of the Year
Related publications listed below.