Skip to main content
U.S. flag

An official website of the United States government

Contaminant Biology

Science Centers and scientists supported by Contaminant Biology develop and apply advanced laboratory methods, field investigations, and modeling capabilities to understand toxicity and effects of environmental contaminant and pathogen exposure.  

News

link

Unintended consequences: New research shows all California condor flocks have been exposed to anticoagulant rodenticides

link

Bipartisan Infrastructure Law investments combine science and technology to track biological threats in US waters

link

New England WSC Expands Research on Per- and Polyfluoroalkyl Substances (PFAS)

Publications

Acetylenotrophic and diazotrophic Bradyrhizobium sp. strain I71 from TCE-contaminated soils

AbstractAcetylene (C2H2) is a molecule rarely found in nature, with very few known natural sources, but acetylenotrophic microorganisms can use acetylene as their primary carbon and energy source. As of 2018 there were 15 known strains of aerobic and anaerobic acetylenotrophs; however, we hypothesize there may yet be unrecognized diversity of acetylenotrophs in nature. This study expands the known

Ecological consequences of neonicotinoid mixtures in streams

Neonicotinoid mixtures are common in streams worldwide, but corresponding ecological responses are poorly understood. We combined experimental and observational studies to narrow this knowledge gap. The mesocosm experiment determined that concentrations of the neonicotinoids imidacloprid and clothianidin (range of exposures, 0 to 11.9 μg/liter) above the hazard concentration for 5% of species (0.0

Pesticide exposure of wild bees and honey bees foraging from field border flowers in intensively managed agriculture areas

Bees are critical for food crop pollination, yet their populations are declining as agricultural practices intensify. Pollinator-attractive field border plantings (e.g. hedgerows and forb strips) can increase bee diversity and abundance in agricultural areas, however recent studies suggest these plants may contain pesticides. Pesticide exposure for wild bees in agricultural areas remains largely u

Science

Organic Contaminants in Reuse Waters and Transport Following Land Application

Potential reuse waters contained unique mixtures of organic contaminants with the greatest number detected in treated municipal wastewater treatment plant effluent, followed by urban stormwater, and agricultural runoff. This study provided information for decisions on reuse strategies to support freshwater supplies.
link

Organic Contaminants in Reuse Waters and Transport Following Land Application

Potential reuse waters contained unique mixtures of organic contaminants with the greatest number detected in treated municipal wastewater treatment plant effluent, followed by urban stormwater, and agricultural runoff. This study provided information for decisions on reuse strategies to support freshwater supplies.
Learn More

Per-and Polyfluoroalkyl Substances (PFAS) Integrated Science Team

Increasing scientific and public awareness of the widespread distribution of per- and poly-fluoroalkyl substances (PFAS) in U.S. drinking-water supplies, aquatic and terrestrial ecosystems, wildlife, and humans has raised many public health and resource management questions that U.S. Geological Survey's (USGS) science can inform. The USGS Environmental Health Program's PFAS Integrated Science Team...
link

Per-and Polyfluoroalkyl Substances (PFAS) Integrated Science Team

Increasing scientific and public awareness of the widespread distribution of per- and poly-fluoroalkyl substances (PFAS) in U.S. drinking-water supplies, aquatic and terrestrial ecosystems, wildlife, and humans has raised many public health and resource management questions that U.S. Geological Survey's (USGS) science can inform. The USGS Environmental Health Program's PFAS Integrated Science Team...
Learn More

Pesticides Detected in Bees, Flowers, Soil, and Air within Pollinator-Attractive Row-Crop Border Plantings

Field study in California describes the potential for pollinator-attractive field borders in agricultural areas to become a pesticide exposure pathway to bees through soil, air, and plants.
link

Pesticides Detected in Bees, Flowers, Soil, and Air within Pollinator-Attractive Row-Crop Border Plantings

Field study in California describes the potential for pollinator-attractive field borders in agricultural areas to become a pesticide exposure pathway to bees through soil, air, and plants.
Learn More