Skip to main content
U.S. flag

An official website of the United States government


Filter Total Items: 40

Gap Analysis Project (GAP) Terrestrial Vertebrate Species Richness Maps for the Conterminous U.S.

The mission of the Gap Analysis Project (GAP) is to support national and regional assessments of the conservation status of vertebrate species and plant communities. This report explains conterminous United States species richness maps created by the U.S. Geological Survey for four major classes in the phylum Chordata: mammals, birds, reptiles, and amphibians. In this work, we focus on terrestrial

A comparison of NLCD 2011 and LANDFIRE EVT 2010: Regional and national summaries.

In order to provide the land cover user community a summary of the similarity and differences between the 2011 National Land Cover Dataset (NLCD) and the Landscape Fire and Resource Management Planning Tools Program Existing Vegetation 2010 Data (LANDFIRE EVT), the two datasets were compared at a national (conterminous U.S.) and regional (Eastern, Midwestern, and Western) extents (Figure 1). The c

Integrating multiple data sources in species distribution modeling: A framework for data fusion

The last decade has seen a dramatic increase in the use of species distribution models (SDMs) to characterize patterns of species’ occurrence and abundance. Efforts to parameterize SDMs often create a tension between the quality and quantity of data available to fit models. Estimation methods that integrate both standardized and non-standardized data types offer a potential solution to the tradeof

Long-term fish monitoring in large rivers: Utility of “benchmarking” across basins

In business, benchmarking is a widely used practice of comparing your own business processes to those of other comparable companies and incorporating identified best practices to improve performance. Biologists and resource managers designing and conducting monitoring programs for fish in large river systems tend to focus on single river basins or segments of large rivers, missing opportunities to

Uncertainty quantification and propagation for projections of extremes in monthly area burned under climate change: A case study in the coastal plain of Georgia, USA

Human‐caused climate change is predicted to affect the frequency of hazard‐linked extremes. Unusually large wildfires are a type of extreme event that is constrained by climate and can be a hazard to society but also an important ecological disturbance. This chapter focuses on changes in the frequency of extreme monthly area burned by wildfires for the end of the 21st century for a wildfire‐prone

Projected gains and losses of wildlife habitat from bioenergy-induced landscape change

Domestic and foreign renewable energy targets and financial incentives have increased demand for woody biomass and bioenergy in the southeastern United States. This demand is expected to be met through purpose-grown agricultural bioenergy crops, short-rotation tree plantations, thinning and harvest of planted and natural forests, and forest harvest residues. With results from a forest economics mo

Bioenergy production and forest landscape change in the southeastern United States

Production of woody biomass for bioenergy, whether wood pellets or liquid biofuels, has the potential to cause substantial landscape change and concomitant effects on forest ecosystems, but the landscape effects of alternative production scenarios have not been fully assessed. We simulated landscape change from 2010 to 2050 under five scenarios of woody biomass production for wood pellets and liqu

Normalized burn ratios link fire severity with patterns of avian occurrence

ContextRemotely sensed differenced normalized burn ratios (DNBR) provide an index of fire severity across the footprint of a fire. We asked whether this index was useful for explaining patterns of bird occurrence within fire adapted xeric pine-oak forests of the southern Appalachian Mountains.ObjectivesWe evaluated the use of DNBR indices for linking ecosystem process with patterns of bird occurre

Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeas

How a national vegetation classification can help ecological research and management

The elegance of classification lies in its ability to compile and systematize various terminological conventions and masses of information that are unattainable during typical research projects. Imagine a discipline without standards for collection, analysis, and interpretation; unfortunately, that describes much of 20th-century vegetation ecology. With differing methods, how do we assess communit

Modeling climate change, urbanization, and fire effects on Pinus palustris ecosystems of the southeastern U.S.

Managing ecosystems for resilience and sustainability requires understanding how they will respond to future anthropogenic drivers such as climate change and urbanization. In fire-dependent ecosystems, predicting this response requires a focus on how these drivers will impact fire regimes. Here, we use scenarios of climate change, urbanization and management to simulate the future dynamics of the

Future land-use scenarios and the loss of wildlife habitats in the southeastern United States

Land-use change is a major cause of wildlife habitat loss. Understanding how changes in land-use policies and economic factors can impact future trends in land use and wildlife habitat loss is therefore critical for conservation efforts. Our goal here was to evaluate the consequences of future land-use changes under different conservation policies and crop market conditions on habitat loss for wil