Skip to main content
U.S. flag

An official website of the United States government

Air- and stream-water-temperature trends in the Chesapeake Bay region, 1960-2014

December 14, 2015

Water temperature is a basic, but important, measure of the condition of all aquatic environments, including the flowing waters in the streams that drain our landscape and the receiving waters of those streams. Climatic conditions have a strong influence on water temperature, which is therefore naturally variable both in time and across the landscape. Changes to natural water-temperature regimes, however, can result in a myriad of effects on aquatic organisms, water quality, circulation patterns, recreation, industry, and utility operations. For example, most species of fish, insects, and other organisms, as well as aquatic vegetation, are highly dependent on water temperature. Warming waters can result in shifts in floral and faunal species distributions, including invasive species and pathogens previously unable to inhabit the once cooler streams. Many chemical processes are temperature dependent, with reactions occurring faster in warmer conditions, leading to degraded water quality as contaminants are released into waterways at greater rates. Circulation patterns in receiving waters, such as bays and estuaries, can change as a result of warmer inflows from streams, thereby affecting organisms in those receiving waters. Changes in abundance of some aquatic species and (or) degradation of water quality can reduce the recreational value of water bodies as waters are perceived as less desirable for water-related activities or as sportfish become less available for anglers. Finally, increasing water temperatures can affect industry and utilities as the thermal capacity is reduced, making the water less effective for cooling purposes.

Chesapeake Bay is the largest estuary in the United States. Eutrophication, the enrichment of a water body with excess nutrients, has plagued the bay for decades and has led to extensive restoration efforts throughout the bay watershed. The warming of stream water can exacerbate eutrophication through increased release of nutrients from in-stream sediments, so understanding changes in stream-water temperature throughout the bay watershed is critical to resource managers seeking to restore the bay ecosystem.

The U.S. Environmental Protection Agency (EPA) uses indicators that “represent the state or trend of certain environmental or societal conditions … to track and better understand the effects of changes in the Earth’s climate” (U.S. Environmental Protection Agency, 2014). Updates to these indicators are published biennially by the EPA. The U.S. Geological Survey (USGS), in cooperation with the EPA, has completed analyses of air- and stream-water-temperature trends in the Chesapeake Bay region to be included as an indicator in a future release of the EPA report.

Publication Year 2015
Title Air- and stream-water-temperature trends in the Chesapeake Bay region, 1960-2014
DOI 10.3133/ofr20151207
Authors John D. Jastram, Karen C. Rice
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Open-File Report
Series Number 2015-1207
Index ID ofr20151207
Record Source USGS Publications Warehouse
USGS Organization Virginia Water Science Center