Approximations of stand water use versus evapotranspiration from three mangrove forests in southwest Florida, USA
Leaves from mangrove forests are often considered efficient in the use of water during photosynthesis, but less is known about whole-tree and stand-level water use strategies. Are mangrove forests as conservative in water use as experimental studies on seedlings imply? Here, we apply a simple model to estimate stand water use (S), determine the contribution of S to evapotranspiration (ET), and approximate the distribution of S versus ET over annual cycles for three mangrove forests in southwest Florida, USA. The value of S ranged from 350 to 511 mm year−1 for two mangrove forests in Rookery Bay to 872 mm year−1 for a mangrove forest along the Shark River in Everglades National Park. This represents 34–49% of ET for Rookery Bay mangroves, a rather conservative rate ofS, and 63–66% of ET for the Shark River mangroves, a less conservative rate of S. However, variability in estimates of S in mangroves is high enough to require additional study on the spatial changes related to forest structural shifts, different tidal regimes, and variable site-specific salinity concentrations in multiple mangrove forests before a true account of water use conservation strategies can be understood at the landscape scale. Evidence does suggest that large, well-developed mangrove forests have the potential to contribute considerably to the ET balance; however, regionally most mangrove forests are much smaller in stature in Florida and likely contribute less to regional water losses through stand-level transpiration.
Citation Information
Publication Year | 2014 |
---|---|
Title | Approximations of stand water use versus evapotranspiration from three mangrove forests in southwest Florida, USA |
DOI | 10.1016/j.agrformet.2014.11.014 |
Authors | Ken W. Krauss, Jordan G. Barr, Victor C. Engel, Jose D. Fuentes, Hongqing Wang |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Agricultural and Forest Meteorology |
Index ID | 70156296 |
Record Source | USGS Publications Warehouse |
USGS Organization | National Wetlands Research Center |