Ken Krauss is a Research Ecologist at the USGS Wetland and Aquatic Research Center.
EDUCATION
Ph.D., Biology, University of Louisiana at Lafayette, 2004
M.S., Forestry, Louisiana State University, 1997
B.S., Biology, University of Southwestern Louisiana, 1994
RESEARCH
Ken Krauss' research spans several habitats, from mangroves to tidal freshwater forested wetlands and marshes. His research takes a multi-tiered approach to understanding eco-physiological processes in coastal wetland forests; defining gas exchange between the soil and atmosphere, and among the leaf, tree, and atmosphere. Research has defined thresholds to tidal freshwater forested wetland habitat change in the face of persistent environmental drivers (esp. sea level rise and salinity), defined the potential of forested wetlands to influence water cycling in coastal areas, and has begun to establish the potential of other wetland types to contribute to water conservation, especially under drought and perennial salinization. Krauss also focuses on the vulnerability of coastal swamp forests and mangroves to sea-level rise, and on how science can inform management and restoration activity within the coastal zone.
BACKGROUND
He has been a scientist with the federal government since 1997, first with the USDA Forest Service in Stoneville, Mississippi and, then, in Honolulu, Hawaii, where he studied sedimentation, systematics, regeneration, growth, invasion biology, and ecophysiology of Pacific island forested wetlands in the Federated States of Micronesia and Hawaii. Krauss began working at the USGS National Wetlands Research Center in 2001 (renamed to USGS Wetland and Aquatic Research Center, or WARC, in 2015), where he maintains an expertise in forest ecology and ecophysiology, and serves as one of WARC's climate change scientists focusing on mangroves and tidal freshwater forested wetlands.
2004-present, Research Ecologist, U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, Louisiana
2001-2004, Ecologist, U.S. Geological Survey, National Wetlands Research Center, Lafayette, Louisiana
1997-2001, Ecologist, USDA Forest Service, Institute of Pacific Islands Forestry, Honolulu, Hawaii
1996-1997, Ecophysiologist Technician, USDA Forest Service, Center for Bottomland Hardwoods Forestry, Stoneville, Mississippi
1995-1996, Graduate Research Assistant, Louisiana State University, School of Forestry, Wildlife, and Fisheries, Baton Rouge, Louisiana
Science and Products
Developing a Pacific Mangrove Monitoring Network (PACMAN) in Response to Sea Level Rise
Carbon and Water Budgeting Along Upper Estuaries: Developing Linkages to Environmental Change
Assessing Environmental Stress in Mature Mangrove Stands: Linkages to Nutrient Loading
Wetland Carbon Working Group: Improving Methodologies and Estimates of Carbon and Greenhouse Gas Flux in Wetlands
Sea-level Rise Vulnerability of Mangrove Forests in Micronesia and the Pacific
Impacts of coastal and watershed changes on upper estuaries: causes and implications of wetland ecosystem transitions along the US Atlantic and Gulf Coasts
The Impact of Sea-Level Rise on Coral Reef and Mangrove Interactions and the Resulting Coastal Flooding Hazards
Science to Inform the Management of Mangrove Ecosystems Undergoing Sea Level Rise at Ding Darling National Wildlife Refuge, Sanibel Island, Florida
Understanding Impacts of Sea-Level Rise and Land Management on Critical Coastal Marsh Habitat
Assessing the Benefits and Vulnerability of Current and Future Potential Ecosystem Services of the Nisqually River Delta and other Puget Sound Estuaries
Improving Our Ability to Forecast Tidal Marsh Response to Sea Level Rise
Ecology of Greenhouse Gas Emissions from Coastal Wetlands
Soil elevation change in mangrove forests and marshes of the Greater Everglades: a regional synthesis of surface elevation table-marker horizon (SET-MH) data
Modeling impacts of drought-induced salinity intrusion on carbon fluxes and storage in tidal freshwater forested wetlands
Data for leaf photosynthesis and net ecosystem exchange of CO2 and CH4 from wetland forest, marsh, and mudflats under simulated ambient and elevated atmospheric carbon dioxide (2013-2014)
Above- and belowground biomass production, decomposition, and wetland elevation change in transitional coastal wetland communities exposed to elevated CO2 and sediment deposition: a mesocosm study from 2012 to 2014
Simulated Methane and Nitrous Oxide Emissions under Drought-induced Saltwater Intrusion in Tidal Freshwater Forested Wetlands
Mangrove Elevation and Species' Responses to Sea-level Rise Across Pohnpei, Federated States of Micronesia (ver. 1.1, December 2021)
Fine root production in tidally influenced freshwater forested wetlands in South Carolina and Georgia, USA (2016-2017)
Soil surface elevation change and vertical accretion data to support the Fruit Farm Creek Mangrove Restoration Project (Rookery Bay National Estuarine Research Reserve, Marco Island, Florida)
Forest structure, regeneration, and soil data to support mangrove forest damage assessment on St. John, U.S. Virgin Islands, from Hurricane Irma (2018-2019)
Modeling soil pore water salinity response to drought in tidal freshwater forested wetlands
Rapid peat development beneath maturing mangrove forests: quantifying ecosystem changes along a 25-year chronosequence of created coastal wetlands
Carbon budget assessment of tidal freshwater forested wetland and oligohaline marsh ecosystems along the Waccamaw and Savannah rivers, U.S.A. (2005-2016)
Soil elevation change in mangrove forests and marshes of the greater Everglades: A regional synthesis of surface elevation table-marker horizon (SET-MH) data
Response of soil respiration to changes in soil temperature and water table level in drained and restored peatlands of the southeastern United States
Mangroves provide blue carbon ecological value at a low freshwater cost
Hydrologic restoration decreases greenhouse gas emissions from shrub bog peatlands in southeastern US
Marshes and mangroves as nature-based coastal storm buffers
Floodplain ecology: A novel wetland community of the Amazon
Coupling near-surface geomorphology with mangrove community diversity at the estuarine scale: A case study at Dongzhaigang Bay, China
The vegetation dynamics of the monsoonal wetland of the Keoladeo National Park, India: A reassessment
A comprehensive assessment of mangrove species and carbon stock on Pohnpei, Micronesia
Constraints on the adjustment of tidal marshes to accelerating sea level rise
Modeling impacts of drought-induced salinity intrusion on carbon dynamics in tidal freshwater forested wetlands
Non-USGS Publications**
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
Science and Products
- Science
Filter Total Items: 18
Developing a Pacific Mangrove Monitoring Network (PACMAN) in Response to Sea Level Rise
Continued sea-level rise from a changing climate is expected to result in the loss of many coastal mangrove trees, which, will strongly affect human populations on isolated Western Pacific islands as they rely heavily on mangrove forests for food (fish, shrimp, and crabs), building materials, and firewood. Mangroves also protect local communities from tsunamis and cyclones and are important for clCarbon and Water Budgeting Along Upper Estuaries: Developing Linkages to Environmental Change
WARC Researchers are studying carbon, water, and nutrient cycling in upper estuarine wetlands.Assessing Environmental Stress in Mature Mangrove Stands: Linkages to Nutrient Loading
WARC Researchers are comparing tree and root growth, soil CO2 flux, and surface elevation change between fertilized and unfertilized mangrove forests to assess the potential impact of increased nutrient loading and to help rate mangrove stand vulnerability.Wetland Carbon Working Group: Improving Methodologies and Estimates of Carbon and Greenhouse Gas Flux in Wetlands
WARC researchers are working to quantify the impacts of future climate and land use/land cover change on greenhouse gas emissions and reductions.Sea-level Rise Vulnerability of Mangrove Forests in Micronesia and the Pacific
The USGS and partners are studying how mangrove forests in the Federated States of Micronesia may respond to sea-level rise over the coming century. Their projections will help Micronesian communities plan for the future.Impacts of coastal and watershed changes on upper estuaries: causes and implications of wetland ecosystem transitions along the US Atlantic and Gulf Coasts
Estuaries and their surrounding wetlands are coastal transition zones where freshwater rivers meet tidal seawater. As sea levels rise, tidal forces move saltier water farther upstream, extending into freshwater wetland areas. Human changes to the surrounding landscape may amplify the effects of this tidal extension, impacting the resiliency and function of the upper estuarine wetlands. One visible...The Impact of Sea-Level Rise on Coral Reef and Mangrove Interactions and the Resulting Coastal Flooding Hazards
Ecosystems such as coral reefs and mangroves provide an effective first line of defense against coastal hazards and represent a promising nature-based solution to adapt to sea-level rise. In many areas, coral reefs cause waves to break and lose energy, allowing for sediment to accumulate on the inshore portion of reef flats (i.e. the shallowest, flattest part of a reef) and mangroves to establish.Science to Inform the Management of Mangrove Ecosystems Undergoing Sea Level Rise at Ding Darling National Wildlife Refuge, Sanibel Island, Florida
Mangroves are forested tidal wetlands that occur in tropical, sub-tropical, and warm temperate coastal regions around the world. Mangroves occupy a significant area of coastlines globally and provide important ecosystem services to humans and wildlife. These services include aesthetic value, storm protection, food provisioning, recreation, critical wildlife habitat, and biological carbon sequestraUnderstanding Impacts of Sea-Level Rise and Land Management on Critical Coastal Marsh Habitat
The Science Issue and Relevance: Coastal wetlands are some of the most productive and valuable habitats in the world. Louisiana contains 40% of the United States’ coastal wetlands, which provide critical habitat for waterfowl and fisheries, as well as many other benefits, such as storm surge protection for coastal communities. In terms of ecosystem services, biological resource production, and inf...Assessing the Benefits and Vulnerability of Current and Future Potential Ecosystem Services of the Nisqually River Delta and other Puget Sound Estuaries
The Nisqually River Delta represents the largest wetland restoration in the Pacific Northwest. The restoration resulted in a 50% increase in potential salt marsh habitat. The Delta supports threatened salmon fisheries, large populations of migratory birds, and provides unique opportunities for recreation. The Delta also provides multiple ecosystem services, which are the benefits that wildlife orImproving Our Ability to Forecast Tidal Marsh Response to Sea Level Rise
Our overall objective is to understand what controls the vulnerability of coastal marshes to risks associated with global change drivers and rising sea levels. Fundamental questions pertaining to coastal wetland vulnerability still need to be addressed. What factors explain spatial and geographic variation in tidal wetland vulnerability? How do short term climatic events (storms) influence the...Ecology of Greenhouse Gas Emissions from Coastal Wetlands
Wetlands have the potential to absorb large amounts of carbon dioxide via photosynthesis, and flooded soils have low oxygen levels which decrease rates of decomposition to promote the retention of soil carbon. However, the type of greenhouse gases emitted from wetlands varies by wetland type and soil condition. A suite of approaches are being used to assess fluxes of greenhouses gases, like... - Data
Filter Total Items: 25
Soil elevation change in mangrove forests and marshes of the Greater Everglades: a regional synthesis of surface elevation table-marker horizon (SET-MH) data
The surface elevation table (SET)-marker horizon (MH) approach (SET-MH, together) is a method for quantifying surface elevation change through measurements of surface and subsurface processes that control wetland soil elevation. This dataset combines SET-MH data from five different U.S. Geological Survey efforts to monitor surface elevation change in the coastal wetlands of the Greater EvergladesModeling impacts of drought-induced salinity intrusion on carbon fluxes and storage in tidal freshwater forested wetlands
A biogeochemistry model was developed to examine plant gross primary productivity (GPP), net primary productivity (NPP), plant respiration, soil respiration, soil organic carbon sequestration rate and storage under scenarios of drought and normal conditions at Tidal Freshwater Forested Wetlands (TFFW) sites along the Waccamaw River and Savannah River in the Southeastern United States.Data for leaf photosynthesis and net ecosystem exchange of CO2 and CH4 from wetland forest, marsh, and mudflats under simulated ambient and elevated atmospheric carbon dioxide (2013-2014)
This study evaluated the net ecosystem exchange of CO2 and CH4 from experimental wetland mesocosms established in elevated CO2 and ambient CO2 glasshouses at the U.S. Geological Survey’s Wetland and Aquatic Research Center (Lafayette, Louisiana). The study duration was approximately two years, and these data represent measured and calculated data from four time points, which the investigators assoAbove- and belowground biomass production, decomposition, and wetland elevation change in transitional coastal wetland communities exposed to elevated CO2 and sediment deposition: a mesocosm study from 2012 to 2014
This data release includes belowground primary productivity, decomposition, and surface elevation change data from a two-year mesocosm experiment from 2012 to 2014. We conducted experimental greenhouse manipulations of atmospheric CO2 (double ambient CO2) and sediment deposition to simulate a land-falling hurricane under future climate conditions. Experimental greenhouse conditions mimicked a landSimulated Methane and Nitrous Oxide Emissions under Drought-induced Saltwater Intrusion in Tidal Freshwater Forested Wetlands
This dataset contains the result of simulated daily emissions of methane (CH4) and nitrous oxide (N2O) from the soils in Tidal Freshwater Forested Wetlands (TFFW) along the Waccamaw River (SC, USA) and the Savannah River (GA and SC, USA) under drought-induced saltwater intrusion using a process-driven biogeochemistry model.Mangrove Elevation and Species' Responses to Sea-level Rise Across Pohnpei, Federated States of Micronesia (ver. 1.1, December 2021)
Future sea-level rise poses a risk to mangrove forests. To better understand potential vulnerability, we developed a new numerical model of soil elevation for mangrove forests. We used the model to generate projections of elevation and mangrove forest composition change under four sea-level rise scenarios through 2100 (37, 52, 67, and 117 cm by 2100). We employed a data-driven modeling approach, uFine root production in tidally influenced freshwater forested wetlands in South Carolina and Georgia, USA (2016-2017)
This dataset includes fine root productivity data that were estimated via two techniques (serial coring and root in-growth bags) in tidal freshwater wetlands and adjacent oligohaline marshes in coastal South Carolina and Georgia from March 2016 through October 2017.Soil surface elevation change and vertical accretion data to support the Fruit Farm Creek Mangrove Restoration Project (Rookery Bay National Estuarine Research Reserve, Marco Island, Florida)
These data represent surface elevation change and vertical accretion time series collected from a series of degraded tidal wetland sites near Goodland, Florida, USA. Surface elevation was measured using a combination of rod surface elevation tables (SETs) and feldspar marker horizons. Here, we document mangrove forest and soil structural changes within transects established in tidally restricted aForest structure, regeneration, and soil data to support mangrove forest damage assessment on St. John, U.S. Virgin Islands, from Hurricane Irma (2018-2019)
These data support efforts to assess mangrove forest structural response to Hurricane Irma. Data were collected from within Virgin Islands National Park in St John, U.S. Virgin Islands. Datasets include measurements of forest inventory and vitality status, woody debris, regeneration assessment, and organic soil carbon.Modeling soil pore water salinity response to drought in tidal freshwater forested wetlands
Model generated soil pore water salinity (psu) values under scenarios of drought and normal conditions at Tidal Freshwater Forested Wetlands (TFFW) sites along the Waccamaw River and Savannah River in the Southeastern United States.Rapid peat development beneath maturing mangrove forests: quantifying ecosystem changes along a 25-year chronosequence of created coastal wetlands
Mangrove forests are among the world's most productive and carbon-rich ecosystems. In addition to providing important fish and wildlife habitat and supporting coastal food webs, these coastal wetlands provide many ecosystem goods and services including clean water, stable coastlines, food, recreational opportunities, and stored carbon. Despite a growing understanding of the factors controlling manCarbon budget assessment of tidal freshwater forested wetland and oligohaline marsh ecosystems along the Waccamaw and Savannah rivers, U.S.A. (2005-2016)
Data to support carbon (C) budget assessment of tidal freshwater forested wetland and oligohaline marsh ecosystems along the Waccamaw and Savannah rivers, U.S.A. This work represents the first estimates of C standing stocks, C mass balance, soil C burial, and lateral C export to aquatic environments in tidal freshwater forested wetlands undergoing transition to oligohaline marsh. - Publications
Filter Total Items: 164
Soil elevation change in mangrove forests and marshes of the greater Everglades: A regional synthesis of surface elevation table-marker horizon (SET-MH) data
Coastal wetlands adapt to rising seas via feedbacks that build soil elevation, which lead to wetland stability. However, accelerated rates of sea-level rise can exceed soil elevation gain, leading to wetland instability and loss. Thus, there is a pressing need to better understand regional and landscape variability in rates of wetland soil elevation change. Here, we conducted a regional synthesisResponse of soil respiration to changes in soil temperature and water table level in drained and restored peatlands of the southeastern United States
Extensive drainage of peatlands in the southeastern United States coastal plain for the purposes of agriculture and timber harvesting has led to large releases of soil carbon as carbon dioxide (CO2) due to enhanced peat decomposition. Growth in mechanisms that provide financial incentives for reducing emissions from land use and land-use change could increase funding for hydrological restoration tMangroves provide blue carbon ecological value at a low freshwater cost
“Blue carbon” wetland vegetation has a limited freshwater requirement. One type, mangroves, utilizes less freshwater during transpiration than adjacent terrestrial ecoregions, equating to only 43% (average) to 57% (potential) of evapotranspiration (ET). Here, we demonstrate that comparative consumptive water use by mangrove vegetation is as much as 2905 kL H2O ha−1 year−1 less than adjacent ecoregHydrologic restoration decreases greenhouse gas emissions from shrub bog peatlands in southeastern US
Peatlands play a disproportionate role in the global carbon cycle. However, many peatlands have been ditched to lower the water table and converted into agriculture, which contributes to anthropogenic greenhouse gas emissions. Hydrologic restoration of drained peatlands could offset greenhouse gas emissions from these actions, but field examples that consider various greenhouse gases are still rarMarshes and mangroves as nature-based coastal storm buffers
Tidal marshes and mangroves are increasingly valued for nature-based mitigation of coastal storm impacts, such as flooding and shoreline erosion hazards, which are growing due to global change. As this review highlights, however, hazard mitigation by tidal wetlands is limited to certain conditions, and not all hazards are equally reduced. Tidal wetlands are effective in attenuating short-period stFloodplain ecology: A novel wetland community of the Amazon
An expedition to the upper estuarine reaches of the Amazon River reveals intriguing overlap of tropical mangrove wetlands with riverine floodplain forests. This newly discovered type of forested wetland assemblage may provide a uniquely process-rich carbon hotspot.Coupling near-surface geomorphology with mangrove community diversity at the estuarine scale: A case study at Dongzhaigang Bay, China
Coastal wetlands are key features of the Earth’s surface and are characterized by a diverse array of coupled geomorphological and biological processes. However, the links between the distribution of biodiversity (e.g., species and structural diversity) and the formation of coastal geomorphology are not well understood on a landscape scale most useful to coastal zone managers. This study describesThe vegetation dynamics of the monsoonal wetland of the Keoladeo National Park, India: A reassessment
As a result of a field trip in 1980 to the monsoonal wetland of the Keoladeo National Park, India, which was organized by Dr. Brij Gopal, a study of the vegetation dynamics of this wetland was initiated. The original hypothesis for this study was that the seasonal vegetation changes caused by the annual summer monsoon was a compressed habitat cycle. Habitat cycles are a characteristic of prairie pA comprehensive assessment of mangrove species and carbon stock on Pohnpei, Micronesia
Mangrove forests are the most important ecosystems on Pohnpei Island, Federated States of Micronesia, as the island communities of the central Pacific rely on the forests for many essential services including protection from sea-level rise that is occurring at a greater pace than the global average. As part of a multi-component assessment to evaluate vulnerabilities of mangrove forests on Pohnpei,Constraints on the adjustment of tidal marshes to accelerating sea level rise
Much uncertainty exists about the vulnerability of valuable tidal marsh ecosystems to relative sea level rise. Previous assessments of resilience to sea level rise, to which marshes can adjust by sediment accretion and elevation gain, revealed contrasting results, depending on contemporary or Holocene geological data. By analyzing globally distributed contemporary data, we found that marsh sedimenModeling impacts of drought-induced salinity intrusion on carbon dynamics in tidal freshwater forested wetlands
Tidal freshwater forested wetlands (TFFW) provide critical ecosystem services including essential habitat for a variety of wildlife species and significant carbon sinks for atmospheric carbon dioxide. However, large uncertainties remain concerning the impacts of climate change on the magnitude and variability of carbon fluxes and storage across a range of TFFW. In this study, we developed a procesNon-USGS Publications**
Kumara, M.P., L.P. Jayatissa, K.W. Krauss, D.H. Phillips, & M. Huxham. 2010. High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia 164: 545-553.Huxham, M., M. Kumara, L. Jayatissa, K.W. Krauss, J. Kairo, J. Langat, M. Mencuccini, M. Skov & B. Kirui. 2010. Intra and inter-specific facilitation in mangroves may increase resilience to climate change threats. Philosophical Transactions of the Royal Society of London B 365: 2127-2135.Krauss, K.W. 2009. Mangrove energetics. Ecology 90: 3588-3589. [book review]Krauss, K.W., C.E. Lovelock, K.L. McKee, L. López-Hoffman, S.M.L. Ewe & W.P. Sousa. 2008. Environmental drivers in mangrove establishment and early development: a review. Aquatic Botany 89: 105-127.Conner, W.H., T.W. Doyle & K.W. Krauss, Eds., 2007. Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.Krauss, K.W., J.L. Chambers & D. Creech. 2007. Selection for salt tolerance in tidal freshwater swamp species: advances using baldcypress as a model for restoration. Pages 385-410 in W.H. Conner, T.W. Doyle, K.W. Krauss (eds.), Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.Conner W.H., K.W. Krauss & T.W. Doyle. 2007. Ecology of tidal freshwater forests in coastal deltaic Louisiana and northeastern South Carolina. Pages 223-253 in W.H. Conner, T.W. Doyle, K.W. Krauss (eds.), Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.Conner, W.H., C.T. Hackney, K.W. Krauss & J.W. Day, Jr. 2007. Tidal freshwater forested wetlands: future research needs and an overview of restoration. Pages 461-485 in W.H. Conner, T.W. Doyle, K.W. Krauss (eds.), Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.Gardiner, E.S. & K.W. Krauss. 2001. Photosynthetic light response of flooded cherrybark oak (Quercus pagoda) seedlings grown in two light regimes. Tree Physiology 21: 1103-1111.Krauss, K.W., R.A. Goyer, J.A. Allen & J.L. Chambers. 2000. Tree shelters effective in coastal swamp restoration (Louisiana). Ecological Restoration18: 200-201.Allen, J.A., K.W. Krauss, N.C. Duke, O. Björkman, D.R. Herbst & C. Shih. 2000. Bruguiera species in Hawai’i: systematic considerations and ecological implications. Pacific Science 54: 331-343.Doyle, T.W. & K.W. Krauss. 1999. The sands and sambars of St. Vincent Island. Florida Wildlife 53: 22-25.Krauss, K.W., J.L. Chambers & J.A. Allen. 1998. Salinity effects and differential germination of several half-sib families of baldcypress from different seed sources. New Forests 15: 53-68.Allen, J.A., W.H. Conner, R.A. Goyer, J.L. Chambers & K.W. Krauss. 1998. Chapter 4: Freshwater forested wetlands and global climate change. Pages 33-44 in G.R. Guntenspergen and B.A Vairin (eds.), Vulnerability of coastal wetlands in the Southeastern United States: climate change research results, 1992-97. U.S. Geological Survey, Biological Resources Division Biological Science Report USGS/BRD/BSR-1998-0002. 101 p.**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
- News