Skip to main content
U.S. flag

An official website of the United States government

Evaluation of catchment delineation methods for the medium-resolution National Hydrography Dataset

January 1, 2009

Different methods for determining catchments (incremental drainage areas) for stream segments of the medium-resolution (1:100,000-scale) National Hydrography Dataset (NHD) were evaluated by the U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA). The NHD is a comprehensive set of digital spatial data that contains information about surface-water features (such as lakes, ponds, streams, and rivers) of the United States. The need for NHD catchments was driven primarily by the goal to estimate NHD streamflow and velocity to support water-quality modeling. The application of catchments for this purpose also demonstrates the broader value of NHD catchments for supporting landscape characterization and analysis.

Five catchment delineation methods were evaluated. Four of the methods use topographic information for the delineation of the NHD catchments. These methods include the Raster Seeding Method; two variants of a method first used in a USGS New England study-one used the Watershed Boundary Dataset (WBD) and the other did not-termed the 'New England Methods'; and the Outlet Matching Method. For these topographically based methods, the elevation data source was the 30-meter (m) resolution National Elevation Dataset (NED), as this was the highest resolution available for the conterminous United States and Hawaii. The fifth method evaluated, the Thiessen Polygon Method, uses distance to the nearest NHD stream segments to determine catchment boundaries.

Catchments were generated using each method for NHD stream segments within six hydrologically and geographically distinct Subbasins to evaluate the applicability of the method across the United States. The five methods were evaluated by comparing the resulting catchments with the boundaries and the computed area measurements available from several verification datasets that were developed independently using manual methods.

The results of the evaluation indicated that the two New England Methods provided the most accurate catchment boundaries. The New England Method with the WBD provided the most accurate results. The time and cost to implement and apply these automated methods were also considered in ultimately selecting the methods used to produce NHD catchments for the conterminous United States and Hawaii.

This study was conducted by a joint USGS-USEPA team during the 2-year period that ended in September 2004. During the following 2-year period ending in the fall of 2006, the New England Methods were used to produce NHD catchments as part of a multiagency effort to generate the NHD streamflow and velocity estimates for a suite of integrated geospatial products known as 'NHDPlus.'

Publication Year 2009
Title Evaluation of catchment delineation methods for the medium-resolution National Hydrography Dataset
DOI 10.3133/sir20095233
Authors Craig M. Johnston, Thomas G. Dewald, Timothy R. Bondelid, Bruce B. Worstell, Lucinda D. McKay, Alan Rea, Richard B. Moore, Jonathan L. Goodall
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2009-5233
Index ID sir20095233
Record Source USGS Publications Warehouse
USGS Organization Earth Resources Observation and Science (EROS) Center; New Hampshire-Vermont Water Science Center