Skip to main content
U.S. flag

An official website of the United States government

Methylmercury-Total mercury ratios in predator and primary consumer insects from Adirondack streams (New York, USA)

March 16, 2020

Mercury (Hg) is a global pollutant that affects biota in remote settings due to atmospheric deposition of inorganic Hg, and its conversion to methylmercury (MeHg), the bioaccumulating and toxic form. Characterizing biotic MeHg is important for evaluating aquatic ecosystem responses to changes in Hg inputs. Aquatic insects possess many qualities desired for MeHg biomonitoring, but are not widely used, largely because of limited information regarding percentages of total mercury (THg) composed of MeHg (i.e., MeHg%) in various taxa. Here, we examine taxonomic, spatial, and seasonal variation in MeHg% of stream-dwelling predator and primary-consumer insects from nine streams in the Adirondack region (NY, USA). Predator MeHg% was high (median 94%) and did not differ significantly among five taxa. MeHg% in selected dragonflies (the most abundant predators, Odonata: Aeshnidae and Libellulidae) exhibited little seasonal and spatial variation, and THg concentration was strongly correlated with aqueous (filtered) MeHg (FMeHg; rs = 0.76). In contrast, MeHg% in primary consumers—shredders (northern caddisflies [Trichoptera: Limnephilidae]) and scrapers (flathead mayflies [Ephemeroptera: Heptageniidae]), were lower (medians 52% and 35%, respectively), and differed significantly between taxa, among sites, and seasonally. Correlations of THg with FMeHg were weak (shredders, rs = 0.45, p = 0.09) or not significant (scrapers, p = 0.89). The higher MeHg% of predators corresponded with their higher trophic positions (indicated by nitrogen stable isotopes). Results suggest obligate predators hold the most promise for the use of THg as a surrogate for MeHg biomonitoring with aquatic insects within the Adirondack region.