The shallow stratigraphy and sand resources offshore of the Mississippi Barrier Islands
Coastal Mississippi is protected by a series of barrier islands ranging in length from 10-25 kilometers that are less than 2 kilometers wide. The majority of these islands comprise the Gulf Islands National Seashore (GUIS), an ecologically diverse shoreline that provides habitat for wildlife including migratory birds and endangered animals. The majority of GUIS is submerged, and aquatic environments include dynamic tidal inlets, ebb-tide deltas, and seagrass beds. The islands are in a state of decline, with land areas severely reduced during the past century by storms, sea-level rise, and human alteration. Morton (2008) estimates that since the mid-1800s up to 64 percent of island surface area has been lost. Heavy damage was inflicted in 2005 by Hurricane Katrina, which passed by as a Category 3 storm and battered the islands with winds of more than 160 kilometers per hour and a storm surge up to 9 meters.
Since 2007, the U.S. Geological Survey (USGS), in collaboration with the National Park Service, has been mapping the seafloor and substrate around the islands as part of the USGS Northern Gulf of Mexico Ecosystem Change and Hazard Susceptibility project. The purpose of these investigations is to characterize the near-surface stratigraphy and identify the influence it may have on island evolution and fate. In 2009, this effort provided the basis for a collaborative effort with the U.S. Army Corps of Engineers (USACE) to expand the investigation outside of GUIS boundaries as part of the Mississippi Coastal Improvement Project (MsCIP). The MsCIP program consists of structural, nonstructural, and environmental project elements to restore portions of coastal Mississippi and GUIS affected by storm impact. The project includes the placement of sand along the islands, both on the present beaches and within the littoral zone, to mitigate shoreline erosion and breaching. This action requires the location and assessment of offshore sand or sediment deposits that can provide suitable material for shoreline renourishment. The geophysical and sample information collected by the USGS during geologic investigations provides this information.
As part of the MsCIP program, in March 2010 the USGS mapped approximately 300 square kilometers of seafloor around GUIS. Interferometric swath bathymetry, sidescan sonar, and Chirp sub-bottom profiling were used to characterize seafloor elevations, texture, and the underlying stratigraphy. On the basis of this information, potential sediment resources were identified. The most promising offshore deposits for beach restoration include shoals, lowstand valley fill, tidal delta deposits, abandoned barrier deposits, and dredge spoil. Of these, lowstand valley fill deposits and dredge spoil are less desirable; lowstand deposits are buried under a 2- to 4-meter blanket of mud, and dredge spoil volume is small. A relict tidal delta and submerged shoals are the most desirable deposits; the tidal delta contains a large volume of material still exposed on the seafloor, and parts of submerged shoals have modest volume and thin mud cover.
Citation Information
Publication Year | 2011 |
---|---|
Title | The shallow stratigraphy and sand resources offshore of the Mississippi Barrier Islands |
DOI | 10.3133/ofr20111173 |
Authors | David Twichell, Elizabeth A. Pendleton, Wayne Baldwin, David Foster, James Flocks, Kyle Kelso, Nancy DeWitt, William Pfeiffer, Arnell Forde, Jason Krick, John Baehr |
Publication Type | Report |
Publication Subtype | USGS Numbered Series |
Series Title | Open-File Report |
Series Number | 2011-1173 |
Index ID | ofr20111173 |
Record Source | USGS Publications Warehouse |
USGS Organization | Woods Hole Coastal and Marine Science Center |