Wayne Baldwin is a Geologist and Data Integration and Analysis Specialist with the Woods Hole Coastal and Marine Science Center Seafloor Mapping Group.
Science and Products
Open Ocean/Marine - Coastal System Change at Fire Island, New York
Geologic Mapping of the Massachusetts Seafloor
Sea Floor Mapping Group
The Mid-Atlantic Resource Imaging Experiment (MATRIX)
High-resolution multichannel seismic reflection data collected along the New England outer continental shelf, slope, and rise south of Martha's Vineyard and Nantucket, Massachusetts, U.S. Geological Survey Field Activity 2016-018-FA
Geospatial data layers of shallow geology from the inner continental shelf of the Delmarva Peninsula, including Maryland and Virginia state waters
High-resolution geophysical data collected in Nantucket Sound Massachusetts in the vicinity of Horseshoe Shoal, during USGS Field Activity 2022-001-FA
Calibrated marine sparker source amplitude decay versus offset offshore Santa Cruz, California
Multibeam bathymetry and acoustic backscatter from the Alaskan region, Extended Continental Shelf Project, 2011 field season: Gulf of Alaska and Bering Sea
High-resolution geophysical and geological data collected in Cape Cod Bay, Massachusetts during USGS Field Activities 2019-002-FA and 2019-034-FA (ver. 2.0, September 2022)
Multichannel seismic-reflection and navigation data collected using SIG ELC1200 and Applied Acoustics Delta Sparkers and Geometrics GeoEel digital streamers during USGS field activity 2020-014-FA.
High-resolution geophysical and geological data collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activities 2018-001-FA and 2018-049-FA
Split-beam Echo Sounder and Navigation Data Collected Using a Simrad EK80 Wide Band Tranceiver and ES38-10 Transducer During the Mid-Atlantic Resource Imaging Experiment (MATRIX), USGS Field Activity 2018-002-FA.
Multichannel Seismic-Reflection and Navigation Data Collected Using Sercel GI Guns and Geometrics GeoEel Digital Streamers During the Mid-Atlantic Resource Imaging Experiment (MATRIX), USGS Field Activity 2018-002-FA
Marine Geophysical Data Collected to Support Methane Seep Research Along the U.S. Atlantic Continental Shelf Break and Upper Continental Slope Between the Baltimore and Keller Canyons During U.S. Geological Survey Field Activities 2017-001-FA and 2017-002
Geospatial Data Layers of Shallow Geology, Sea-Floor Texture, and Physiographic Zones from the Inner Continental Shelf of Martha's Vineyard from Aquinnah to Wasque Point, and Nantucket from Eel Point to Great Point
Mature diffuse tectonic block boundary revealed by the 2020 southwestern Puerto Rico seismic sequence
Distributed faulting typically tends to coalesce into one or a few faults with repeated deformation. The progression of clustered medium-sized (≥Mw4.5) earthquakes during the 2020 seismic sequence in southwestern Puerto Rico (SWPR), modeling shoreline subsidence from InSAR, and sub-seafloor mapping by high-resolution seismic reflection profiles, suggest that the 2020 SWPR seismic sequence was dist
Seismic stratigraphic framework of the continental shelf offshore Delmarva, U.S.A.: Implications for Mid-Atlantic Bight evolution since the Pliocene
Short and long-term movement of mudflows of the Mississippi River Delta Front and their known and potential impacts on oil and gas infrastructure
Shallow geology, sea-floor texture, and physiographic zones of the inner continental shelf from Aquinnah to Wasque Point, Martha’s Vineyard, and Eel Point to Great Point, Nantucket, Massachusetts
Change in morphology and modern sediment thickness on the inner continental shelf offshore of Fire Island, New York between 2011 and 2014: Analysis of hurricane impact
Inner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy
High-resolution geophysical data from the Inner Continental Shelf: South of Martha's Vineyard and north of Nantucket, Massachusetts
Shallow geology, sea-floor texture, and physiographic zones of Vineyard and western Nantucket Sounds, Massachusetts
Assessing the impact of Hurricanes Irene and Sandy on the morphology and modern sediment thickness on the inner continental shelf offshore of Fire Island, New York
Sea-floor texture and physiographic zones of the inner continental shelf from Salisbury to Nahant, Massachusetts, including the Merrimack Embayment and Western Massachusetts Bay
The impact of Hurricane Sandy on the shoreface and inner shelf of Fire Island, New York: large bedform migration but limited erosion
Maps showing the change in modern sediment thickness on the Inner Continental Shelf offshore of Fire Island, New York, between 1996-97 and 2011
Science and Products
- Science
Open Ocean/Marine - Coastal System Change at Fire Island, New York
Geophysical mapping and research have demonstrated that the seabed on the inner continental shelf has a variety of shapes which are linked to long-term evolution of the barrier island. Regional-scale modeling forecasts how atmospheric forcing and oceanographic circulation case sand, gravel, and other materials to be transported by tides, winds, waves, fresh water fluxes, and density variations.Geologic Mapping of the Massachusetts Seafloor
The U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management (CZM) is conducting geologic mapping of the sea floor to characterize the surface and shallow subsurface geologic framework within the Massachusetts coastal zone. The long-term goal of this mapping effort is to produce high-resolution geologic maps and a Geographic Information System (GIS) that will...Sea Floor Mapping Group
The Sea Floor Mapping Group (SFMG) is a core capability at the Woods Hole Coastal & Marine Science Center (WHCMSC) that provides support for coastal, lacustrine and marine geologic research. The staff has a wide-range of expertise and is responsible for geophysical and sampling data acquisition, processing, interpretation and publication, logistics, design, and research and development. SFMG has...The Mid-Atlantic Resource Imaging Experiment (MATRIX)
In late August 2018, scientists and technical staff from the USGS Coastal and Marine Hazards and Resources Program completed the acquisition of over 2000 km of multichannel seismic (MCS) data as part of the Mid-Atlantic Resource Imaging Experiment (MATRIX) conducted aboard the R/V Hugh R. Sharp. The seismic program was led by the USGS Gas Hydrates Project and was sponsored by the USGS, the U.S... - Data
Filter Total Items: 18
High-resolution multichannel seismic reflection data collected along the New England outer continental shelf, slope, and rise south of Martha's Vineyard and Nantucket, Massachusetts, U.S. Geological Survey Field Activity 2016-018-FA
High resolution multichannel seismic-reflection data were collected along the New England outer continental shelf, slope, and rise south of Martha's Vineyard and Nantucket, Massachusetts, aboard the Woods Hole Oceanographic Institution (WHOI) research vessel Neil Armstrong on June 11 - 12, 2016 in order to characterize the stratigraphy of a portion of the New England continental margin incised byGeospatial data layers of shallow geology from the inner continental shelf of the Delmarva Peninsula, including Maryland and Virginia state waters
Geologic structure and isopach maps were constructed by interpreting over 19,890 trackline kilometers of co-located multichannel boomer, sparker and chirp seismic reflection profiles from the continental shelf of the Delmarva Peninsula, including Maryland and Virginia state waters. In this region, Brothers and others (2020) interpret 12 seismic units and 11 regional unconformities. They interpretHigh-resolution geophysical data collected in Nantucket Sound Massachusetts in the vicinity of Horseshoe Shoal, during USGS Field Activity 2022-001-FA
In June 2022, the U.S. Geological Survey, in collaboration with the Massachusetts Office of Coastal Zone Management, collected high-resolution geophysical data, in Nantucket Sound to understand the regional geology in the vicinity of Horseshoe Shoal. This effort is part of a long-term collaboration between the USGS and the Commonwealth of Massachusetts to map the State’s waters, support research oCalibrated marine sparker source amplitude decay versus offset offshore Santa Cruz, California
This two-vessel survey was designed to quantify the decay of sound emitted from the SIG ELP790 minisparker (powered at 700 joules) and from the Applied Acoustics Delta Sparker (powered at 1.0 and 2.4 kilojoules) as a function of distance during marine geophysical surveys. Seven transect sites were surveyed at five different water depths (25, 50, 100, 200, and 600 meters) to compare the effects ofMultibeam bathymetry and acoustic backscatter from the Alaskan region, Extended Continental Shelf Project, 2011 field season: Gulf of Alaska and Bering Sea
This publication releases swath bathymetry and backscatter datasets derived from multibeam bathymetric data acquired by the U.S. Geological Survey (USGS) on the R/V Marcus G. Langseth legs MGL1108 (transit) and MGL1109 in the Gulf of Alaska, and MGL1111 in the Bering Sea. Leg MGL1108 data were combined with leg MGL1109 data during processing. These data were acquired with a Kongsberg Simrad EM-122High-resolution geophysical and geological data collected in Cape Cod Bay, Massachusetts during USGS Field Activities 2019-002-FA and 2019-034-FA (ver. 2.0, September 2022)
Accurate data and maps of sea floor geology are important first steps toward protecting fish habitat, delineating marine resources, and assessing environmental changes due to natural or human impacts. To address these concerns the U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management (CZM), comprehensively mapped the Cape Cod Bay sea floor to characterizeMultichannel seismic-reflection and navigation data collected using SIG ELC1200 and Applied Acoustics Delta Sparkers and Geometrics GeoEel digital streamers during USGS field activity 2020-014-FA.
In March 2020, the U.S. Geological Survey and the University of Puerto Rico Mayaguez (UPRM) Department of Marine Sciences conducted a marine seismic-reflection experiment focused on observing geophysical evidence of submarine faulting and mass wasting related to the southwestern Puerto Rico seismic sequence of 2019-20. The seismic sequence culminated with a magnitude 6.4 earthquake centered beneatHigh-resolution geophysical and geological data collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activities 2018-001-FA and 2018-049-FA
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget aSplit-beam Echo Sounder and Navigation Data Collected Using a Simrad EK80 Wide Band Tranceiver and ES38-10 Transducer During the Mid-Atlantic Resource Imaging Experiment (MATRIX), USGS Field Activity 2018-002-FA.
In summer 2018, the U.S. Geological Survey partnered with the U.S Department of Energy and the Bureau of Ocean Energy Management to conduct the Mid-Atlantic Resources Imaging Experiment (MATRIX) as part of the U.S. Geological Survey Gas Hydrates Project. The field program objectives were to acquire high-resolution 2-dimensional multichannel seismic-reflection and split-beam echosounder data alongMultichannel Seismic-Reflection and Navigation Data Collected Using Sercel GI Guns and Geometrics GeoEel Digital Streamers During the Mid-Atlantic Resource Imaging Experiment (MATRIX), USGS Field Activity 2018-002-FA
In summer 2018, the U.S. Geological Survey partnered with the U.S Department of Energy and the Bureau of Ocean Energy Management to conduct the Mid-Atlantic Resources Imaging Experiment (MATRIX) as part of the U.S. Geological Survey Gas Hydrates Project. The field program objectives were to acquire high-resolution 2-dimensional multichannel seismic-reflection and split-beam echosounder data alongMarine Geophysical Data Collected to Support Methane Seep Research Along the U.S. Atlantic Continental Shelf Break and Upper Continental Slope Between the Baltimore and Keller Canyons During U.S. Geological Survey Field Activities 2017-001-FA and 2017-002
In spring and summer 2017, the U.S. Geological Survey's Gas Hydrates Project conducted two cruises aboard the research vessel Hugh R. Sharp to explore the geology, chemistry, ecology, physics, and oceanography of sea-floor methane seeps and water column gas plumes on the northern U.S. Atlantic margin between the Baltimore and Keller Canyons. Split-beam and multibeam echo sounders and a chirp subboGeospatial Data Layers of Shallow Geology, Sea-Floor Texture, and Physiographic Zones from the Inner Continental Shelf of Martha's Vineyard from Aquinnah to Wasque Point, and Nantucket from Eel Point to Great Point
Geologic, sediment texture, and physiographic zone maps characterize the sea floor south and west of Martha's Vineyard and north of Nantucket, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and ma - Multimedia
- Publications
Filter Total Items: 32
Mature diffuse tectonic block boundary revealed by the 2020 southwestern Puerto Rico seismic sequence
Distributed faulting typically tends to coalesce into one or a few faults with repeated deformation. The progression of clustered medium-sized (≥Mw4.5) earthquakes during the 2020 seismic sequence in southwestern Puerto Rico (SWPR), modeling shoreline subsidence from InSAR, and sub-seafloor mapping by high-resolution seismic reflection profiles, suggest that the 2020 SWPR seismic sequence was dist
AuthorsUri S. ten Brink, L Vanacore, E. J. Fielding, Jason Chaytor, A.M. Lopez-Venegas, Wayne E. Baldwin, David S. Foster, Brian D. AndrewsSeismic stratigraphic framework of the continental shelf offshore Delmarva, U.S.A.: Implications for Mid-Atlantic Bight evolution since the Pliocene
Understanding how past coastal systems have evolved is critical to predicting future coastal change. Using over 12,000 trackline kilometers of recently collected, co-located multi-channel boomer, sparker and chirp seismic reflection profile data integrated with previously collected borehole and vibracore data, we define the upper (< 115 m below mean lower low water) seismic stratigraphic frameworkAuthorsLaura L. Brothers, David S. Foster, Elizabeth A. Pendleton, Wayne E. BaldwinShort and long-term movement of mudflows of the Mississippi River Delta Front and their known and potential impacts on oil and gas infrastructure
Mudflows on the Mississippi River Delta Front (MRDF) are recognized hazards to oil and gas infrastructure in the shallow (20 – 300 m water depth) Gulf of Mexico. Preconditioning of the seafloor for failure results from high sedimentation rates coupled with slope over-steepening, under-consolidation, and abundant biogenic gas production. Catastrophic failure of production platforms and pipelines duAuthorsJason Chaytor, Wayne E. Baldwin, Samuel J. Bentley, Melanie Damour, Douglas Jones, Jillian Maloney, Michael Miner, Jeff Obelcz, Kehui XuShallow geology, sea-floor texture, and physiographic zones of the inner continental shelf from Aquinnah to Wasque Point, Martha’s Vineyard, and Eel Point to Great Point, Nantucket, Massachusetts
A series of interpretive maps that describe the shallow geology, distribution, and texture of sea-floor sediments, and physiographic zones of the sea floor along the south and west shores of Martha’s Vineyard and the north shore of Nantucket, Massachusetts, were produced by using high-resolution geophysical data (interferometric and multibeam swath bathymetry, light detection and ranging (lidar) bAuthorsElizabeth A. Pendleton, Wayne E. Baldwin, Seth D. Ackerman, David S. Foster, Brian D. Andrews, William C. Schwab, Laura L. BrothersChange in morphology and modern sediment thickness on the inner continental shelf offshore of Fire Island, New York between 2011 and 2014: Analysis of hurricane impact
Seafloor mapping investigations conducted on the lower shoreface and inner continental shelf offshore of Fire Island, New York in 2011 and 2014, the period encompassing the impacts of Hurricanes Irene and Sandy, provide an unprecedented perspective regarding regional inner continental shelf sediment dynamics during large storm events. Analyses of these studies demonstrate that storm-induced eroAuthorsWilliam C. Schwab, Wayne E. Baldwin, John C. Warner, Jeffrey H. List, Jane F. Denny, Maria Liste Munoz, Ilgar SafakInner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy
Hurricane Sandy was one of the most destructive hurricanes in US history, making landfall on the New Jersey coast on Oct 30, 2012. Storm impacts included several barrier island breaches, massive coastal erosion, and flooding. While changes to the subaerial landscape are relatively easily observed, storm-induced changes to the adjacent shoreface and inner continental shelf are more difficult to evaAuthorsJohn C. Warner, William C. Schwab, Jeffrey H. List, Ilgar Safak, Maria Liste, Wayne E. BaldwinHigh-resolution geophysical data from the Inner Continental Shelf: South of Martha's Vineyard and north of Nantucket, Massachusetts
The U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management have cooperated to map approximately 185 square kilometers of the inner continental shelf south of Martha’s Vineyard and north of Nantucket, Massachusetts. This report contains geophysical data collected by the U.S. Geological Survey during a survey in 2013. The geophysical data include (1) swath bathymetry collecteAuthorsSeth D. Ackerman, Laura L. Brothers, David S. Foster, Brian D. Andrews, Wayne E. Baldwin, William C. SchwabShallow geology, sea-floor texture, and physiographic zones of Vineyard and western Nantucket Sounds, Massachusetts
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs/video, and surficial sediment samples collected within the 494-square-kilometer study area. InterpretatiAuthorsWayne E. Baldwin, David S. Foster, Elizabeth A. Pendleton, Walter A. Barnhardt, William C. Schwab, Brian D. Andrews, Seth D. AckermanAssessing the impact of Hurricanes Irene and Sandy on the morphology and modern sediment thickness on the inner continental shelf offshore of Fire Island, New York
This report documents the changes in seabed morphology and modern sediment thickness detected on the inner continental shelf offshore of Fire Island, New York, before and after Hurricanes Irene and Sandy made landfall. Comparison of acoustic backscatter imagery, seismic-reflection profiles, and bathymetry collected in 2011 and in 2014 show that sedimentary structures and depositional patterns moveAuthorsWilliam C. Schwab, Wayne E. Baldwin, Jane F. DennySea-floor texture and physiographic zones of the inner continental shelf from Salisbury to Nahant, Massachusetts, including the Merrimack Embayment and Western Massachusetts Bay
A series of maps that describe the distribution and texture of sea-floor sediments and physiographic zones of Massachusetts State waters from Nahant to Salisbury, Massachusetts, including western Massachusetts Bay, have been produced by using high-resolution geophysical data (interferometric and multibeam swath bathymetry, lidar bathymetry, backscatter intensity, and seismic reflection profiles),AuthorsElizabeth E. Pendleton, Walter A. Barnhardt, Wayne E. Baldwin, David S. Foster, William C. Schwab, Brian D. Andrews, Seth D. AckermanThe impact of Hurricane Sandy on the shoreface and inner shelf of Fire Island, New York: large bedform migration but limited erosion
We investigate the impact of superstorm Sandy on the lower shoreface and inner shelf offshore the barrier island system of Fire Island, NY using before-and-after surveys involving swath bathymetry, backscatter and CHIRP acoustic reflection data. As sea level rises over the long term, the shoreface and inner shelf are eroded as barrier islands migrate landward; large storms like Sandy are thought tAuthorsJohn A. Goff, Roger D. Flood, James A. Austin, William C. Schwab, Beth A. Christensen, Cassandra M. Browne, Jane F. Denny, Wayne E. BaldwinMaps showing the change in modern sediment thickness on the Inner Continental Shelf offshore of Fire Island, New York, between 1996-97 and 2011
The U.S. Geological Survey mapped approximately 336 square kilometers of the lower shoreface and inner continental shelf offshore of Fire Island, New York, in 1996 and 1997, using high-resolution sidescan-sonar and seismic-reflection systems, and again in 2011, using interferometric sonar and high-resolution chirp seismic-reflection systems. This report presents a comparison of sediment thicknessAuthorsWilliam C. Schwab, Wayne E. Baldwin, Jane F. Denny - News