Skip to main content
U.S. flag

An official website of the United States government

Simulation of water-table and freshwater/saltwater interface response to climate-change-driven sea-level rise and changes in recharge at Fire Island National Seashore, New York

July 16, 2021

The fresh groundwater system at Fire Island National Seashore in New York is one of the natural resources that is most vulnerable to climate change; the various federally listed threatened or endangered species that live on Fire Island, including the piping plover, roseate tern shorebird, and seabeach amaranth may be affected by changes in the groundwater system. The U.S. Geological Survey, in cooperation with the National Park Service, developed a three-dimensional groundwater-flow model to simulate climate-change-related changes in depth to the water table and depth to freshwater/saltwater interfaces on Fire Island. An existing SEAWAT three-dimensional variable-density groundwater flow and transport model was converted to a MODFLOW–NWT three-dimensional finite-difference groundwater model with the Seawater Intrusion (SWI2) package and recalibrated using the UCODE_2005 automatic calibration software. The simulated groundwater divide was found to be skewed strongly toward the ocean shore in response to the modeled wave setup and tidal pumping overheight.

Effects of climate change include sea-level rise and changes in groundwater recharge rates. Sea-level rise scenarios included specified uniform steady states at 0.2-, 0.4-, and 0.6-meter increases above the 2015 level, applied to the existing topography. A high-recharge scenario was created by increasing 2015 recharge rates by 10 percent. Under all scenarios except the low-recharge scenario, the depth to the water table and the thickness of the unsaturated zone decreased. The thickness of the freshwater lens decreased under every scenario. Resulting maps were generated on a 25-meter grid and indicate changes in areas where natural resources may be vulnerable because of projected climate changes.