Oceanographer with the USGS Pacific Coastal and Marine Science Center
Science and Products
Coastal Climate Impacts
The impacts of climate change and sea-level rise around the Pacific and Arctic Oceans can vary tremendously. Thus far the vast majority of national and international impact assessments and models of coastal climate change have focused on low-relief coastlines that are not near seismically active zones. Furthermore, the degree to which extreme waves and wind will add further stress to coastal...
Future coastal hazards along the U.S. Atlantic coast
This product consists of several datasets that map future coastal flooding and erosion hazards due to sea level rise (SLR) and storms for three States (Florida, Georgia, and Virginia) along the Atlantic coast of the United States. The SLR scenarios encompass a plausible range of projections by 2100 based on the best available science and with enough resolution to support a suite of different plann
Future coastal hazards along the U.S. North and South Carolina coasts
This product consists of several datasets that map future coastal flooding and erosion hazards due to sea level rise (SLR) and storms along the North and South Carolina coast. The SLR scenarios encompass a plausible range of projections by 2100 based on the best available, science and with enough resolution to support a suite of different planning horizons. The storm scenarios are derived with the
Projected responses of the coastal water table for California using present-day and future sea-level rise scenarios
Coastal groundwater levels (heads) can increase with sea level rise (SLR) where shallow groundwater floats on underlying seawater. In some areas coastal groundwater could rise almost as much as SLR, but where rising groundwater intersects surface drainage features, the increase will be less. Numerical modeling can provide insight into coastal areas that may be more or less vulnerable to hazards as
Observations of coral reef oceanographic and groundwater properties off Makua, Kauai, HI, USA, August 2016
Pervasive and sustained coral diseases contribute to the systemic degradation of reef ecosystems, however, an understanding of the physicochemical controls on a coral disease event is still largely lacking. Water circulation and residence times and submarine groundwater discharge all determine the degree to which reef organisms are exposed to the variable chemistry of overlying waters; understandi
Beach topography and nearshore bathymetry of northern Monterey Bay, California
This data release presents beach topography and nearshore bathymetry data from repeated surveys in northern Monterey Bay, California to document changes in shoreline position and coastal morphology as they relate to episodic (storms), seasonal, and interannual and longer (e.g. El Ni?o) processes. The ongoing monitoring program was initiated in October 2014 with semi-annual surveys performed in lat
Increasing threat of coastal groundwater hazards from sea-level rise in California
Projected sea-level rise will raise coastal water tables, resulting in groundwater hazards that threaten shallow infrastructure and coastal ecosystem resilience. Here we model a range of sea-level rise scenarios to assess the responses of water tables across the diverse topography and climates of the California coast. With 1 m of sea-level rise, areas flooded from below are predicted to expand ~50
Authors
K.M. Befus, Patrick L. Barnard, Daniel J. Hoover, Juliette Finzi Hart, Clifford I. Voss
Physicochemical controls on zones of higher coral stress where Black Band Disease occurs at Mākua Reef, Kauaʻi, Hawaiʻi
Pervasive and sustained coral diseases contribute to the systemic degradation of reef ecosystems, however, to date an understanding of the physicochemical controls on a coral disease event is still largely lacking. Water circulation and residence times and submarine groundwater discharge all determine the degree to which reef organisms are exposed to the variable chemistry of overlying waters; und
Authors
Ferdinand Oberle, Curt D. Storlazzi, Olivia Cheriton, Renee K. Takesue, Daniel J. Hoover, Joshua B. Logan, Christina M. Runyon, Christina A. Kellogg, Cordell Johnson, Peter W. Swarzenski
Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño
The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However
Authors
Patrick L. Barnard, Daniel J. Hoover, David M. Hubbard, Alexander G. Snyder, Bonnie C. Ludka, Jonathan Allan, George M. Kaminsky, Ruggiero, Timu W. Gallien, Laura Gabel, Diana McCandless, Heather M. Weiner, Nicholas Cohn, Dylan L. Anderson, Katherine A. Serafin
Sea-level rise and coastal groundwater inundation and shoaling at select sites in California, USA
Study regionThe study region spans coastal California, USA, and focuses on three primary sites: Arcata, Stinson Beach, and Malibu Lagoon.Study focus1 m and 2 m sea-level rise (SLR) projections were used to assess vulnerability to SLR-driven groundwater emergence and shoaling at select low-lying, coastal sites in California. Separate and combined inundation scenarios for SLR and groundwater emergen
Authors
Daniel J. Hoover, Kingsley Odigie, Peter W. Swarzenski, Patrick L. Barnard
Nearshore bathymetric evolution on a high-energy beach during the 2009-10 El Nino winter
The nearshore bathymetric evolution of a high-energy beach at the mouth of San Francisco Bay, California (USA), was tracked before, during, and after the powerful El Niño winter of 2009-10 to quantify alongshore bar formation and migration as well as the magnitude and alongshore variability of cross-shore transport. The observed deep-water winter wave energy was among the highest ever recorded in
Authors
Patrick L. Barnard, Daniel J. Hoover, Jeffrey A. Hansen
Wave exposure of Corte Madera Marsh, Marin County, California-a field investigation
Tidal wetlands provide valuable habitat, are an important source of primary productivity, and can help to protect the shoreline from erosion by attenuating approaching waves. These functions are threatened by the loss of tidal marshes, whether due to erosion, sea-level rise, or land-use practices. Erosion protection by wetlands is expected to vary geographically, because wave attenuation in marshe
Authors
Jessica R. Lacy, Daniel J. Hoover
Science and Products
- Science
Coastal Climate Impacts
The impacts of climate change and sea-level rise around the Pacific and Arctic Oceans can vary tremendously. Thus far the vast majority of national and international impact assessments and models of coastal climate change have focused on low-relief coastlines that are not near seismically active zones. Furthermore, the degree to which extreme waves and wind will add further stress to coastal... - Data
Future coastal hazards along the U.S. Atlantic coast
This product consists of several datasets that map future coastal flooding and erosion hazards due to sea level rise (SLR) and storms for three States (Florida, Georgia, and Virginia) along the Atlantic coast of the United States. The SLR scenarios encompass a plausible range of projections by 2100 based on the best available science and with enough resolution to support a suite of different plannFuture coastal hazards along the U.S. North and South Carolina coasts
This product consists of several datasets that map future coastal flooding and erosion hazards due to sea level rise (SLR) and storms along the North and South Carolina coast. The SLR scenarios encompass a plausible range of projections by 2100 based on the best available, science and with enough resolution to support a suite of different planning horizons. The storm scenarios are derived with theProjected responses of the coastal water table for California using present-day and future sea-level rise scenarios
Coastal groundwater levels (heads) can increase with sea level rise (SLR) where shallow groundwater floats on underlying seawater. In some areas coastal groundwater could rise almost as much as SLR, but where rising groundwater intersects surface drainage features, the increase will be less. Numerical modeling can provide insight into coastal areas that may be more or less vulnerable to hazards asObservations of coral reef oceanographic and groundwater properties off Makua, Kauai, HI, USA, August 2016
Pervasive and sustained coral diseases contribute to the systemic degradation of reef ecosystems, however, an understanding of the physicochemical controls on a coral disease event is still largely lacking. Water circulation and residence times and submarine groundwater discharge all determine the degree to which reef organisms are exposed to the variable chemistry of overlying waters; understandiBeach topography and nearshore bathymetry of northern Monterey Bay, California
This data release presents beach topography and nearshore bathymetry data from repeated surveys in northern Monterey Bay, California to document changes in shoreline position and coastal morphology as they relate to episodic (storms), seasonal, and interannual and longer (e.g. El Ni?o) processes. The ongoing monitoring program was initiated in October 2014 with semi-annual surveys performed in lat - Multimedia
- Publications
Increasing threat of coastal groundwater hazards from sea-level rise in California
Projected sea-level rise will raise coastal water tables, resulting in groundwater hazards that threaten shallow infrastructure and coastal ecosystem resilience. Here we model a range of sea-level rise scenarios to assess the responses of water tables across the diverse topography and climates of the California coast. With 1 m of sea-level rise, areas flooded from below are predicted to expand ~50AuthorsK.M. Befus, Patrick L. Barnard, Daniel J. Hoover, Juliette Finzi Hart, Clifford I. VossPhysicochemical controls on zones of higher coral stress where Black Band Disease occurs at Mākua Reef, Kauaʻi, Hawaiʻi
Pervasive and sustained coral diseases contribute to the systemic degradation of reef ecosystems, however, to date an understanding of the physicochemical controls on a coral disease event is still largely lacking. Water circulation and residence times and submarine groundwater discharge all determine the degree to which reef organisms are exposed to the variable chemistry of overlying waters; undAuthorsFerdinand Oberle, Curt D. Storlazzi, Olivia Cheriton, Renee K. Takesue, Daniel J. Hoover, Joshua B. Logan, Christina M. Runyon, Christina A. Kellogg, Cordell Johnson, Peter W. SwarzenskiExtreme oceanographic forcing and coastal response due to the 2015–2016 El Niño
The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. HoweverAuthorsPatrick L. Barnard, Daniel J. Hoover, David M. Hubbard, Alexander G. Snyder, Bonnie C. Ludka, Jonathan Allan, George M. Kaminsky, Ruggiero, Timu W. Gallien, Laura Gabel, Diana McCandless, Heather M. Weiner, Nicholas Cohn, Dylan L. Anderson, Katherine A. SerafinSea-level rise and coastal groundwater inundation and shoaling at select sites in California, USA
Study regionThe study region spans coastal California, USA, and focuses on three primary sites: Arcata, Stinson Beach, and Malibu Lagoon.Study focus1 m and 2 m sea-level rise (SLR) projections were used to assess vulnerability to SLR-driven groundwater emergence and shoaling at select low-lying, coastal sites in California. Separate and combined inundation scenarios for SLR and groundwater emergenAuthorsDaniel J. Hoover, Kingsley Odigie, Peter W. Swarzenski, Patrick L. BarnardNearshore bathymetric evolution on a high-energy beach during the 2009-10 El Nino winter
The nearshore bathymetric evolution of a high-energy beach at the mouth of San Francisco Bay, California (USA), was tracked before, during, and after the powerful El Niño winter of 2009-10 to quantify alongshore bar formation and migration as well as the magnitude and alongshore variability of cross-shore transport. The observed deep-water winter wave energy was among the highest ever recorded inAuthorsPatrick L. Barnard, Daniel J. Hoover, Jeffrey A. HansenWave exposure of Corte Madera Marsh, Marin County, California-a field investigation
Tidal wetlands provide valuable habitat, are an important source of primary productivity, and can help to protect the shoreline from erosion by attenuating approaching waves. These functions are threatened by the loss of tidal marshes, whether due to erosion, sea-level rise, or land-use practices. Erosion protection by wetlands is expected to vary geographically, because wave attenuation in marsheAuthorsJessica R. Lacy, Daniel J. Hoover - News