I am a research chemist at the Upper Midwest Environmental Science Center. I work with various chemicals dealing with the control of invasive species. Currently the projects I work on deal with HPLC, LC-MS, GC-MS and MP-AES.
Science and Products
Data Release for Laboratory and field comparisons of TFM bar formulations used to treat small streams for larval sea lamprey
The dataset was generated to verify the suitability of the new TFM bar formulation for wide-scale use in the Sea Lamprey Control Program (SLCP). Dataset includes TFM concentrations of three streams (each used twice) where randomized experimental applications of new and old TFM bar formulation dissolution trials were conducted, TFM concentrations of 12 laboratory flume experimental applications of
Data Release for Distribution of Niclosamide Following Granular Bayluscide Applications in Lotic Systems
The granular formulation of Bayluscide [Bayluscide 3.2% Granular Sea Lamprey Larvicide, granular Bayluscide (gB)] is applied in lentic and lotic systems to survey (assessment) and kill (treatment) larval sea lampreys (Petromyzon marinus) in the Great Lakes basin. Granules are spread on the water surface, settle to the sediment surface, and dissolve. The potential risk of niclosamide exposure [5 Ch
Behavioral and Reproductive Effects of the Lampricides TFM and TFM:1% Niclosamide on Native Freshwater Mussels - Data Release
This study continues our investigations into the effects of lampricides on mussels by extending research into potential effects on behavioral and reproductive endpoints on the plain pocketbook mussel(Lampsilis cardium). We hypothesized that TFM (3-trifluoromethyl-4'-nitrophenol) and TFM with Niclosamide (NIC, 2', 5-dichloro-4'-nitrosalicylanilide, hereafter TFM:NIC) would reduce the viability of f
Field Evaluation of an Improved Solid TFM Formulation for Use in Treating Small Tributary Streams, data
This study builds upon work conducted under the Great Lakes Fishery Commission (GLFC) Technical Assistance Program that was funded to prepare and evaluate an alternative solid formulation of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) in a laboratory flume. The project aligns within the lampricide theme in the Sea Lamprey Research Program by improving lampricide performance, efficacy, and
Field and laboratory data to determine lethal pesticide concentrations for control of invasive crayfish
Data were collected associated with the application of a pesticide to a stormwater retention pond and burrows to suppress or eradicate an invasive crayfish species, Procambarus clarkii, in support of high-priority research developing control methods to mitigate impacts of invasive crayfish within the Great Lakes Basin. Effectiveness of the treatment was accessed using an in-situ bioassay and by me
Determination of the seasonality effect on sea lamprey and TFM efficacy - Year One
Controlling larval sea lamprey (Petromyzon marinus) in Great Lakes tributaries with of 4-Nitro-3-(trifluoromethyl)phenol (TFM, a lampricide) is essential to reducing the number of spawning-phase sea lamprey, an invasive species capable of collapsing Great Lakes fisheries. An important component of treating streams with lampricide is ensuring that the proper amount of TFM is applied, effectively co
Assessments of the binary mixtures of four toxicants on Zebra Mussel (Dreissena polymorpha) mortality, data release
This dataset captures the Zebra Mussel dose-response to four independent toxicants and each binary mixture of those toxicants. Toxicants included EarthTec QZ, Clam-Trol CT-2 (syn. Spectrus CT1300), niclosamide, and potassium chloride. Each dose of toxicant was verified with either ICP-OES or UHPLC, depending on analyte, and comparison to a standard curve. Mortality was tabulated for each observati
Laboratory and field comparisons of TFM bar formulations used to treat small streams for larval sea lamprey
A solid formulation of the pesticide TFM (4-nitro-3-(trifluoromethyl)-phenol) was developed in the 1980s for application in small tributaries during treatments to control invasive sea lamprey (Petromyzon marinus Linnaeus, 1758). Several initial inert ingredients were discontinued and substituted, culminating with an interim formulation that unacceptably softens and rapidly decays in warm condition
Authors
James A. Luoma, Justin Schueller, Nicholas A. Schloesser, Todd Johnson, Courtney A Kirkeeng
Behavioral and reproductive effects of the lampricides TFM and TFM:1% Niclosamide on native freshwater mussels
The lampricides TFM (3-trifluoromethyl-4′-nitrophenol) and Niclosamide (NIC, 2′, 5-dichloro-4′-nitrosalicylanilide) are used to control sea lamprey populations in the Great Lakes and associated tributaries. Niclosamide is often used as an additive to TFM to reduce the amount of TFM required to control sea lamprey. Concern is growing over the risk that lampricide treatments pose to native freshwate
Authors
Teresa J. Newton, Michael A. Boogaard, Nicholas A. Schloesser, Courtney A Kirkeeng, Justin Schueller, Sherwin G. Toribio
Use of an artificial stream to monitor avoidance behavior of larval sea lamprey in response to TFM and niclosamide
The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) has been used in liquid form to control larval sea lamprey (Petromyzon marinus) in Great Lakes tributaries since the late 1950s. In the 1980s a dissolvable TFM bar was developed as a supplemental tool for application to small tributaries as a deterrent to larvae seeking water not activated with TFM. The size, mass, and number of bars needed in s
Authors
Nicholas A. Schloesser, Michael A. Boogaard, Todd Johnson, Courtney A Kirkeeng, Justin Schueller, Richard A. Erickson
Concentration addition and independent action assessments of the binary mixtures of four toxicants on zebra mussel (Dreissena polymorpha) mortality
Researchers most often focus on individual toxicants when identifying effective chemical control agents for aquatic invasive species; however, toxicant mixtures may elicit synergistic effects. Synergistic effects may decrease required concentrations and shorten exposure durations for treatments. We investigated four toxicants (EarthTec QZ, Clam-Trol CT-2, niclosamide, and potassium chloride) that
Authors
Matthew Barbour, Justin Schueller, Todd J. Severson, Jeremy K. Wise, Matthew J Meulemans, James A. Luoma, Diane L. Waller
Literature review for candidate chemical control agents for nonnative crayfish
Nonnative crayfish are an immediate and pervasive threat to aquatic environments and their biodiversity. Crayfish control can be achieved by physical methods, water chemistry modification, biological methods, biocidal application, and application of crayfish physiology modifiers. The purpose of this report is to identify suitable candidates for potential control of nonnative crayfish through a com
Authors
Justin R. Schueller, Justin Smerud, Kim T. Fredricks, Joel G. Putnam
Field evaluation of an improved solid TFM formulation for use in treating small tributary streams
A solid lampricide formulation containing 23% 3-trifluoromethyl-4-nitrophenol (TFM) as the active ingredient was developed in the mid-1980s for use in small tributaries of dendritic streams during routine treatments to kill larval sea lamprey. This TFM bar formulation was designed to use a matrix of commercially prepared surfactants that would dissolve and slowly release their TFM payload over an
Authors
James A. Luoma, Nicholas Robertson, Justin Schueller, Nicholas A. Schloesser, Todd Johnson, Todd J. Severson, Matthew J Meulemans, Erica Muelemans
Use of an artificial stream to monitor avoidance behavior of larval sea lamprey in response to TFM and niclosamide
The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) has been used in liquid form to control larval sea lamprey (Petromyzon marinus) in Great Lakes tributaries since the late 1950s. In the 1980s a dissolvable TFM bar was developed as a supplemental tool for application to small tributaries as a deterrent to larvae seeking water not activated with TFM. The size, mass, and number of bars needed in s
Authors
Nicholas A. Schloesser, Michael A. Boogaard, Todd Johnson, Courtney A Kirkeeng, Justin Schueller, Richard A. Erickson
Distribution of niclosamide following granular Bayer applications in lentic environments
Temporal and spatial distribution of niclosamide in the water column and sediment were evaluated after the application of granular Bayluscide in six lentic sea lamprey (Petromyzon marinus) larval assessment plots. Water and sediment were collected 0.25, 1, 3, 5, and 7 hours after application and were analyzed for niclosamide, the active ingredient in granular Bayluscide. Water samples were collect
Authors
Jeffry Bernardy, Cheryl A. Kaye, Nicholas A. Schloesser, Justin Schueller
Development and evaluation of an improved TFM formulation for use in feeder stream treatments
The binational Great Lakes Fishery Commission sponsored Sea Lamprey Control Program effectively utilizes a variety of lampricide tools to keep populations of parasitic sea lampreys in the Great Lakes at levels that do not cause undue economic or ecological damage. The most widely used toxicant used in lampricide formulations is 3-trifluoromethyl-4-nitrophenol (TFM). In typical treatments, a liquid
Authors
James A. Luoma, Nicholas Robertson, Nicholas A. Schloesser, Courtney A Kirkeeng, Justin Schueller, Erica Meulemans
Behavioral and Reproductive Effects of the Lampricides TFM and TFM:1% Niclosamide on Native Freshwater Mussels - SPSS Code Release
This study continues our investigations into the effects of lampricides on mussels by extending research into potential effects on behavioral and reproductive endpoints on the mussel plain pocketbook (Lampsilis cardium). We hypothesized that TFM and TFM:NIC would reduce the viability of free glochidia in a dose-dependent manner, that older glochidia would be more sensitive than younger glochidia,
Science and Products
- Data
Data Release for Laboratory and field comparisons of TFM bar formulations used to treat small streams for larval sea lamprey
The dataset was generated to verify the suitability of the new TFM bar formulation for wide-scale use in the Sea Lamprey Control Program (SLCP). Dataset includes TFM concentrations of three streams (each used twice) where randomized experimental applications of new and old TFM bar formulation dissolution trials were conducted, TFM concentrations of 12 laboratory flume experimental applications ofData Release for Distribution of Niclosamide Following Granular Bayluscide Applications in Lotic Systems
The granular formulation of Bayluscide [Bayluscide 3.2% Granular Sea Lamprey Larvicide, granular Bayluscide (gB)] is applied in lentic and lotic systems to survey (assessment) and kill (treatment) larval sea lampreys (Petromyzon marinus) in the Great Lakes basin. Granules are spread on the water surface, settle to the sediment surface, and dissolve. The potential risk of niclosamide exposure [5 ChBehavioral and Reproductive Effects of the Lampricides TFM and TFM:1% Niclosamide on Native Freshwater Mussels - Data Release
This study continues our investigations into the effects of lampricides on mussels by extending research into potential effects on behavioral and reproductive endpoints on the plain pocketbook mussel(Lampsilis cardium). We hypothesized that TFM (3-trifluoromethyl-4'-nitrophenol) and TFM with Niclosamide (NIC, 2', 5-dichloro-4'-nitrosalicylanilide, hereafter TFM:NIC) would reduce the viability of fField Evaluation of an Improved Solid TFM Formulation for Use in Treating Small Tributary Streams, data
This study builds upon work conducted under the Great Lakes Fishery Commission (GLFC) Technical Assistance Program that was funded to prepare and evaluate an alternative solid formulation of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) in a laboratory flume. The project aligns within the lampricide theme in the Sea Lamprey Research Program by improving lampricide performance, efficacy, andField and laboratory data to determine lethal pesticide concentrations for control of invasive crayfish
Data were collected associated with the application of a pesticide to a stormwater retention pond and burrows to suppress or eradicate an invasive crayfish species, Procambarus clarkii, in support of high-priority research developing control methods to mitigate impacts of invasive crayfish within the Great Lakes Basin. Effectiveness of the treatment was accessed using an in-situ bioassay and by meDetermination of the seasonality effect on sea lamprey and TFM efficacy - Year One
Controlling larval sea lamprey (Petromyzon marinus) in Great Lakes tributaries with of 4-Nitro-3-(trifluoromethyl)phenol (TFM, a lampricide) is essential to reducing the number of spawning-phase sea lamprey, an invasive species capable of collapsing Great Lakes fisheries. An important component of treating streams with lampricide is ensuring that the proper amount of TFM is applied, effectively coAssessments of the binary mixtures of four toxicants on Zebra Mussel (Dreissena polymorpha) mortality, data release
This dataset captures the Zebra Mussel dose-response to four independent toxicants and each binary mixture of those toxicants. Toxicants included EarthTec QZ, Clam-Trol CT-2 (syn. Spectrus CT1300), niclosamide, and potassium chloride. Each dose of toxicant was verified with either ICP-OES or UHPLC, depending on analyte, and comparison to a standard curve. Mortality was tabulated for each observati - Publications
Laboratory and field comparisons of TFM bar formulations used to treat small streams for larval sea lamprey
A solid formulation of the pesticide TFM (4-nitro-3-(trifluoromethyl)-phenol) was developed in the 1980s for application in small tributaries during treatments to control invasive sea lamprey (Petromyzon marinus Linnaeus, 1758). Several initial inert ingredients were discontinued and substituted, culminating with an interim formulation that unacceptably softens and rapidly decays in warm conditionAuthorsJames A. Luoma, Justin Schueller, Nicholas A. Schloesser, Todd Johnson, Courtney A KirkeengBehavioral and reproductive effects of the lampricides TFM and TFM:1% Niclosamide on native freshwater mussels
The lampricides TFM (3-trifluoromethyl-4′-nitrophenol) and Niclosamide (NIC, 2′, 5-dichloro-4′-nitrosalicylanilide) are used to control sea lamprey populations in the Great Lakes and associated tributaries. Niclosamide is often used as an additive to TFM to reduce the amount of TFM required to control sea lamprey. Concern is growing over the risk that lampricide treatments pose to native freshwateAuthorsTeresa J. Newton, Michael A. Boogaard, Nicholas A. Schloesser, Courtney A Kirkeeng, Justin Schueller, Sherwin G. ToribioUse of an artificial stream to monitor avoidance behavior of larval sea lamprey in response to TFM and niclosamide
The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) has been used in liquid form to control larval sea lamprey (Petromyzon marinus) in Great Lakes tributaries since the late 1950s. In the 1980s a dissolvable TFM bar was developed as a supplemental tool for application to small tributaries as a deterrent to larvae seeking water not activated with TFM. The size, mass, and number of bars needed in sAuthorsNicholas A. Schloesser, Michael A. Boogaard, Todd Johnson, Courtney A Kirkeeng, Justin Schueller, Richard A. EricksonConcentration addition and independent action assessments of the binary mixtures of four toxicants on zebra mussel (Dreissena polymorpha) mortality
Researchers most often focus on individual toxicants when identifying effective chemical control agents for aquatic invasive species; however, toxicant mixtures may elicit synergistic effects. Synergistic effects may decrease required concentrations and shorten exposure durations for treatments. We investigated four toxicants (EarthTec QZ, Clam-Trol CT-2, niclosamide, and potassium chloride) thatAuthorsMatthew Barbour, Justin Schueller, Todd J. Severson, Jeremy K. Wise, Matthew J Meulemans, James A. Luoma, Diane L. WallerLiterature review for candidate chemical control agents for nonnative crayfish
Nonnative crayfish are an immediate and pervasive threat to aquatic environments and their biodiversity. Crayfish control can be achieved by physical methods, water chemistry modification, biological methods, biocidal application, and application of crayfish physiology modifiers. The purpose of this report is to identify suitable candidates for potential control of nonnative crayfish through a comAuthorsJustin R. Schueller, Justin Smerud, Kim T. Fredricks, Joel G. PutnamField evaluation of an improved solid TFM formulation for use in treating small tributary streams
A solid lampricide formulation containing 23% 3-trifluoromethyl-4-nitrophenol (TFM) as the active ingredient was developed in the mid-1980s for use in small tributaries of dendritic streams during routine treatments to kill larval sea lamprey. This TFM bar formulation was designed to use a matrix of commercially prepared surfactants that would dissolve and slowly release their TFM payload over anAuthorsJames A. Luoma, Nicholas Robertson, Justin Schueller, Nicholas A. Schloesser, Todd Johnson, Todd J. Severson, Matthew J Meulemans, Erica MuelemansUse of an artificial stream to monitor avoidance behavior of larval sea lamprey in response to TFM and niclosamide
The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) has been used in liquid form to control larval sea lamprey (Petromyzon marinus) in Great Lakes tributaries since the late 1950s. In the 1980s a dissolvable TFM bar was developed as a supplemental tool for application to small tributaries as a deterrent to larvae seeking water not activated with TFM. The size, mass, and number of bars needed in sAuthorsNicholas A. Schloesser, Michael A. Boogaard, Todd Johnson, Courtney A Kirkeeng, Justin Schueller, Richard A. EricksonDistribution of niclosamide following granular Bayer applications in lentic environments
Temporal and spatial distribution of niclosamide in the water column and sediment were evaluated after the application of granular Bayluscide in six lentic sea lamprey (Petromyzon marinus) larval assessment plots. Water and sediment were collected 0.25, 1, 3, 5, and 7 hours after application and were analyzed for niclosamide, the active ingredient in granular Bayluscide. Water samples were collectAuthorsJeffry Bernardy, Cheryl A. Kaye, Nicholas A. Schloesser, Justin SchuellerDevelopment and evaluation of an improved TFM formulation for use in feeder stream treatments
The binational Great Lakes Fishery Commission sponsored Sea Lamprey Control Program effectively utilizes a variety of lampricide tools to keep populations of parasitic sea lampreys in the Great Lakes at levels that do not cause undue economic or ecological damage. The most widely used toxicant used in lampricide formulations is 3-trifluoromethyl-4-nitrophenol (TFM). In typical treatments, a liquidAuthorsJames A. Luoma, Nicholas Robertson, Nicholas A. Schloesser, Courtney A Kirkeeng, Justin Schueller, Erica Meulemans - Software
Behavioral and Reproductive Effects of the Lampricides TFM and TFM:1% Niclosamide on Native Freshwater Mussels - SPSS Code Release
This study continues our investigations into the effects of lampricides on mussels by extending research into potential effects on behavioral and reproductive endpoints on the mussel plain pocketbook (Lampsilis cardium). We hypothesized that TFM and TFM:NIC would reduce the viability of free glochidia in a dose-dependent manner, that older glochidia would be more sensitive than younger glochidia,