Skip to main content
U.S. flag

An official website of the United States government

Kyle R. Anderson, Ph.D.

I use monitoring data to better understand and forecast volcanic processes and hazards.

I work to understand volcanic systems by developing mathematical models which relate magma physics with monitoring data such as ground deformations and eruption rates. Model predictions can be compared with real-world observations using probabilistic statistical approaches, making it possible to constrain properties of volcanic systems such as the composition and volume of stored magma. These techniques can also be used in some cases to forecast future eruptive activity. I've worked most extensively at Mount St. Helens and Kīlauea volcanoes, but I'm interested in volcanoes and eruptions around the world.

I have a particular interest in volcanic caldera collapses and in episodic/cyclic eruptive behavior. Other interests include the physics governing magma ascent; the role of magmatic volatiles on eruptive processes; uncertainty quantification in volcanological inverse problems; quantifying rates of magma supply, storage, and eruption; ground deformation caused by magmatic processes; the application of machine learning to volcanology problems; and volcanic hazards assessments.

See the “Publications” tab below for more information.

*Disclaimer: Listing outside positions with professional scientific organizations on this Staff Profile are for informational purposes only and do not constitute an endorsement of those professional scientific organizations or their activities by the USGS, Department of the Interior, or U.S. Government

Was this page helpful?