Lee-Gray Boze is a Physical Scientist with the Gas Hydrates facilities at the Woods Hole Coastal and Marine Science Center.
Science and Products
U.S. Geological Survey Gas Hydrates Project
The USGS Gas Hydrates Project has been making contributions to advance understanding of US and international gas hydrates science for at least three decades. The research group working on gas hydrates at the USGS is among the largest in the US and has expertise in all the major geoscience disciplines, as well as in the physics and chemistry of gas hydrates, the geotechnical properties of hydrate...
Gas Hydrates- Climate and Hydrate Interactions
The USGS Gas Hydrates Project focuses on the study of natural gas hydrates in deepwater marine systems and permafrost areas. Breakdown of gas hydrates due to short- or long-term climate change may release methane to the ocean-atmosphere system. As a potent greenhouse gas, methane that reaches the atmosphere from degrading gas hydrate deposits could in turn exacerbate climate warming.
Gas Hydrates - Primer
What is Gas Hydrate? Gas hydrate is an ice-like crystalline form of water and low molecular weight gas (e.g., methane, ethane, carbon dioxide). On Earth, gas hydrates occur naturally in some marine sediments and within and beneath permafrost. Gas hydrates have also been inferred on other planets or their moons.
Preliminary global database of known and inferred gas hydrate locations
For more than 25 years, the U.S. Geological Survey Gas Hydrates Project has compiled and maintained an internal database of locations where the existence of gas hydrate has been confirmed or inferred in research studies. The existence of gas hydrate was considered confirmed when gas hydrate was recovered by researchers or videotaped from a vehicle (such as a submersible or remotely operated vehicl
USGS tools perform gas source analysis in the field
Field studies of gas hydrate rely on gas sampling and analysis tools to determine the origins and alteration of methane and other hydrocarbons. The conventional strategy for deciphering gas origins has been to collect gas and other related samples in the field then pack, ship, store, and later analyze these discrete samples in a laboratory using instruments that require specialized training and de
Authors
John Pohlman, Michael Casso, Lee-Gray Boze, Emile Bergeron
Ryder Glacier in northwest Greenland is shielded from warm Atlantic water by a bathymetric sill
The processes controlling advance and retreat of outlet glaciers in fjords draining the Greenland Ice Sheet remain poorly known, undermining assessments of their dynamics and associated sea-level rise in a warming climate. Mass loss of the Greenland Ice Sheet has increased six-fold over the last four decades, with discharge and melt from outlet glaciers comprising key components of this loss. Here
Authors
Martin Jakobsson, Larry Mayer, Johan Nilsson, Christian Stranne, Brian Calder, Matthew O'Regan, J. Farrell, Thomas M. Cronin, Volker Bruchert, Julek Chawarski, Bjorn Eriksson, Jonas Fredriksson, Laura Gemery, Anna Glueder, Felicity A. Holmes, Kevin Jerram, Nina Kirchner, Alan Mix, Julia Muchowski, Abhay Prakash, Brendan Reilly, Brett Thornton, Adam Ulfsbo, Elizabeteh Weidner, Henning Akesson, Tamara Handl, Emelie Stahl, Lee-Gray Boze, Sam Reed, Gabriel West, June Padman
Pressure core analysis of geomechanical and fluid flow properties of seals associated with gas hydrate-bearing reservoirs in the Krishna-Godavari Basin, offshore India
Physical properties of the sediment directly overlying a gas hydrate reservoir provide important controls on the effectiveness of depressurizing that reservoir to extract methane from gas hydrate as an energy resource. The permeability of overlying sediment determines if a gas hydrate reservoir’s upper contact will provide an effective seal that enables efficient reservoir depressurization. Comp
Authors
Junbong Jang, Sheng Dai, J. Yoneda, William F. Waite, Laura A. Stern, Lee-Gray Boze, Timothy S. Collett, Pushpendra Kumar
Science and Products
- Science
U.S. Geological Survey Gas Hydrates Project
The USGS Gas Hydrates Project has been making contributions to advance understanding of US and international gas hydrates science for at least three decades. The research group working on gas hydrates at the USGS is among the largest in the US and has expertise in all the major geoscience disciplines, as well as in the physics and chemistry of gas hydrates, the geotechnical properties of hydrate...Gas Hydrates- Climate and Hydrate Interactions
The USGS Gas Hydrates Project focuses on the study of natural gas hydrates in deepwater marine systems and permafrost areas. Breakdown of gas hydrates due to short- or long-term climate change may release methane to the ocean-atmosphere system. As a potent greenhouse gas, methane that reaches the atmosphere from degrading gas hydrate deposits could in turn exacerbate climate warming.Gas Hydrates - Primer
What is Gas Hydrate? Gas hydrate is an ice-like crystalline form of water and low molecular weight gas (e.g., methane, ethane, carbon dioxide). On Earth, gas hydrates occur naturally in some marine sediments and within and beneath permafrost. Gas hydrates have also been inferred on other planets or their moons. - Data
Preliminary global database of known and inferred gas hydrate locations
For more than 25 years, the U.S. Geological Survey Gas Hydrates Project has compiled and maintained an internal database of locations where the existence of gas hydrate has been confirmed or inferred in research studies. The existence of gas hydrate was considered confirmed when gas hydrate was recovered by researchers or videotaped from a vehicle (such as a submersible or remotely operated vehicl - Publications
USGS tools perform gas source analysis in the field
Field studies of gas hydrate rely on gas sampling and analysis tools to determine the origins and alteration of methane and other hydrocarbons. The conventional strategy for deciphering gas origins has been to collect gas and other related samples in the field then pack, ship, store, and later analyze these discrete samples in a laboratory using instruments that require specialized training and deAuthorsJohn Pohlman, Michael Casso, Lee-Gray Boze, Emile BergeronRyder Glacier in northwest Greenland is shielded from warm Atlantic water by a bathymetric sill
The processes controlling advance and retreat of outlet glaciers in fjords draining the Greenland Ice Sheet remain poorly known, undermining assessments of their dynamics and associated sea-level rise in a warming climate. Mass loss of the Greenland Ice Sheet has increased six-fold over the last four decades, with discharge and melt from outlet glaciers comprising key components of this loss. HereAuthorsMartin Jakobsson, Larry Mayer, Johan Nilsson, Christian Stranne, Brian Calder, Matthew O'Regan, J. Farrell, Thomas M. Cronin, Volker Bruchert, Julek Chawarski, Bjorn Eriksson, Jonas Fredriksson, Laura Gemery, Anna Glueder, Felicity A. Holmes, Kevin Jerram, Nina Kirchner, Alan Mix, Julia Muchowski, Abhay Prakash, Brendan Reilly, Brett Thornton, Adam Ulfsbo, Elizabeteh Weidner, Henning Akesson, Tamara Handl, Emelie Stahl, Lee-Gray Boze, Sam Reed, Gabriel West, June PadmanPressure core analysis of geomechanical and fluid flow properties of seals associated with gas hydrate-bearing reservoirs in the Krishna-Godavari Basin, offshore India
Physical properties of the sediment directly overlying a gas hydrate reservoir provide important controls on the effectiveness of depressurizing that reservoir to extract methane from gas hydrate as an energy resource. The permeability of overlying sediment determines if a gas hydrate reservoir’s upper contact will provide an effective seal that enables efficient reservoir depressurization. CompAuthorsJunbong Jang, Sheng Dai, J. Yoneda, William F. Waite, Laura A. Stern, Lee-Gray Boze, Timothy S. Collett, Pushpendra Kumar - Multimedia