Marie is a Physical Scientist in the Geology, Minerals, Energy, and Geophysics Science Center in Menlo Park, CA. She works in the Quaternary Paleoenvironmental Research Laboratory. She focuses on multi-proxy studies of late Pleistocene and Holocene sediment cores. Analysis of these sediments allows reconstruction of the ecological and climate history of the region.
Marie Champagne first became interested in paleoclimate research at UC Berkeley. She worked with Dr. Roger Byrne on many projects studying lake sediment records from North America. Since joining USGS in 2016, she has worked on paleoecological studies as a part of David Wahl’s research project.
Education and Certifications
B.A., Physical Geography, University of California Berkeley, 2014.
Science and Products
Drivers and Impacts of North Pacific Climate Variability
Climate model forecasts indicate an increase in extreme hydrologic events, including floods and droughts, for California and the western U.S. in the future. To better understand what the consequences of this future change in climate may be, USGS scientists are studying the frequency, magnitude, and impacts of past hydroclimate variability and extremes in the region. This project produces well...
Methods for robust estimates of tree biomass from pollen accumulation rates: Quantifying paleoecological reconstruction uncertainty
Pollen accumulation rates (PAR, grains cm–2 year–1) have been shown to be a reliable but methodologically complex bioproxy for quantitative reconstruction of past tree abundance. In a prior study, we found that the PARs of major tree taxa – Pseudotsuga, Pinus, Notholithocarpus, and the pollen group TC (Taxaceae and Cupressaceae families) – were robust and precise estimators of contemporary tree bi
Land management explains major trends in forest structure and composition over the last millennium in California’s Klamath Mountains
For millennia, forest ecosystems in California have been shaped by fire from both natural processes and Indigenous land management, but the notion of climatic variation as a primary controller of the pre-colonial landscape remains pervasive. Understanding the relative influence of climate and Indigenous burning on the fire regime is key because contemporary forest policy and management are informe
Linking modern pollen accumulation rates to biomass: Quantitative vegetation reconstruction in the western Klamath Mountains, NW California, USA
Quantitative reconstructions of vegetation abundance from sediment-derived pollen systems provide unique insights into past ecological conditions. Recently, the use of pollen accumulation rates (PAR, grains cm−2 year−1) has shown promise as a bioproxy for plant abundance. However, successfully reconstructing region-specific vegetation dynamics using PAR requires that accurate assessments of pollen
Science and Products
- Science
Drivers and Impacts of North Pacific Climate Variability
Climate model forecasts indicate an increase in extreme hydrologic events, including floods and droughts, for California and the western U.S. in the future. To better understand what the consequences of this future change in climate may be, USGS scientists are studying the frequency, magnitude, and impacts of past hydroclimate variability and extremes in the region. This project produces well... - Publications
Methods for robust estimates of tree biomass from pollen accumulation rates: Quantifying paleoecological reconstruction uncertainty
Pollen accumulation rates (PAR, grains cm–2 year–1) have been shown to be a reliable but methodologically complex bioproxy for quantitative reconstruction of past tree abundance. In a prior study, we found that the PARs of major tree taxa – Pseudotsuga, Pinus, Notholithocarpus, and the pollen group TC (Taxaceae and Cupressaceae families) – were robust and precise estimators of contemporary tree biLand management explains major trends in forest structure and composition over the last millennium in California’s Klamath Mountains
For millennia, forest ecosystems in California have been shaped by fire from both natural processes and Indigenous land management, but the notion of climatic variation as a primary controller of the pre-colonial landscape remains pervasive. Understanding the relative influence of climate and Indigenous burning on the fire regime is key because contemporary forest policy and management are informeLinking modern pollen accumulation rates to biomass: Quantitative vegetation reconstruction in the western Klamath Mountains, NW California, USA
Quantitative reconstructions of vegetation abundance from sediment-derived pollen systems provide unique insights into past ecological conditions. Recently, the use of pollen accumulation rates (PAR, grains cm−2 year−1) has shown promise as a bioproxy for plant abundance. However, successfully reconstructing region-specific vegetation dynamics using PAR requires that accurate assessments of pollen