Nicholas Van der Elst is a scientist in the Earthquake Hazards Program.
Science and Products
Could the M7.1 Ridgecrest, CA Earthquake Sequence Trigger a Large Earthquake Nearby?
Release Date: SEPTEMBER 30, 2019 Two of the first questions that come to mind for anyone who just felt an earthquake are, “Will there be another one?” and “Will it be larger?”.
The Past Holds the Key to the Future of Aftershock Forecasting
Release Date: MAY 7, 2018 The outcomes of past aftershock sequences can be used to describe the range of possibilities for a current sequence.
Operational Earthquake Forecasting – Implementing a Real-Time System for California
It is well know that every earthquake can spawn others (e.g., as aftershocks), and that such triggered events can be large and damaging, as recently demonstrated by L’Aquila, Italy and Christchurch, New Zealand earthquakes. In spite of being an explicit USGS strategic-action priority (http://pubs.usgs.gov/of/2012/1088; page 32), the USGS currently lacks an automated system with which to forecast s...
Filter Total Items: 18
Aftershocks preferentially occur in previously active areas
The clearest statistical signal in aftershock locations is that most aftershocks occur close to their mainshocks. More precisely, aftershocks are triggered at distances following a power‐law decay in distance (Felzer and Brodsky, 2006). This distance decay kernel is used in epidemic‐type aftershock sequence (ETAS) modeling and is typically assumed to be isotropic, even though individual sequences
Prospective and retrospective evaluation of the U.S. Geological Survey public aftershock forecast for the 2019-2021 Southwest Puerto Rico Earthquake and aftershocks
The Mw 6.4 Southwest Puerto Rico Earthquake of 7 January 2020 was accompanied by a robust fore‐ and aftershock sequence. The U.S. Geological Survey (USGS) has issued regular aftershock forecasts for more than a year since the mainshock, available on a public webpage. Forecasts were accompanied by interpretive and informational material, published in English and Spanish. Informational products incl
Improvements to the Third Uniform California Earthquake Rupture Forecast ETAS Model (UCERF3‐ETAS)
We describe recent improvements to the Third Uniform California Earthquake Rupture Forecast ETAS Model (UCERF3‐ETAS), which continues to represent our most advanced and complete earthquake forecast in terms of relaxing segmentation assumptions and representing multifault ruptures, elastic‐rebound effects, and spatiotemporal clustering (the latter to represent aftershocks and otherwise triggered ev
B-positive: A robust estimator of aftershock magnitude distribution in transiently incomplete catalogs
The earthquake magnitude-frequency distribution is characterized by the b-value, which describes the relative frequency of large versus small earthquakes. It has been suggested that changes in b-value after an earthquake can be used to discriminate whether that earthquake is part of a foreshock sequence or a more typical mainshock-aftershock sequence, with a decrease in b-value heralding a larger
Potential duration of aftershocks of the 2020 southwestern Puerto Rico earthquake
AbstractAftershocks (earthquakes clustered spatially and chronologically near the occurrence of a causative earthquake) are ongoing in southwestern Puerto Rico after a series of earthquakes, which include a magnitude 6.4 earthquake that occurred near Barrio Indios, Guayanilla, on January 7, 2020, and affected the surrounding area. This report estimates the expected duration of these aftershocks by
The U.S. Geological Survey’s Rapid Seismic Array Deployment for the 2019 Ridgecrest Earthquake Sequence
Rapid seismic deployments following large earthquakes capture ephemeral near‐field recordings of aftershocks and ambient noise that can provide valuable data for seismological studies. The U.S. Geological Survey installed 19 temporary seismic stations following the 4 July 2019 Mw 6.4 and 6 July 2019 (UTC) Mw 7.1 earthquakes near the city of Ridgecrest, California. The stations record the aftershoc
#EarthquakeAdvisory: Exploring discourse between government officials, news media and social media during the Bombay Beach 2016 Swarm
Communicating probabilities of natural hazards to varied audiences is a notoriously difficult task. Many of these challenges were encountered during the 2016 Bombay Beach, California, swarm of ~100 2≤M≤4.3 earthquakes, which began on 26 September 2016 and lasted for several days. The swarm’s proximity to the southern end of the San Andreas fault caused concern that a larger earthquake could be tri
Improving earthquake forecasts during swarms with a duration model
Earthquake swarms present a challenge for operational earthquake forecasting because they are driven primarily by transient external processes, such as fluid flow, the behavior and duration of which are difficult to predict. In this study, we develop a swarm duration model to estimate how long a swarm is likely to last based on actuarial statistics of previous swarms in a given region. We demonstr
Updated California aftershock parameters
Reasenberg and Jones (1989) introduced a statistical model for aftershock rate following a mainshock along with estimates of “generic” California parameter values based on past aftershock sequences. The Reasenberg and Jones (1989) model has been used for decades to issue aftershock forecasts following M≥5 mainshocks in California. Here, we update the “generic” parameters for California through a f
Turing-style tests for UCERF3 synthetic catalogs
Epidemic-Type Aftershock Sequence (ETAS) catalogs generated from the 3rd Uniform California Earthquake Rupture Forecast (UCERF3) model are unique in that they are the first to combine a complex, fault-based long-term forecast with short-term earthquake clustering statistics. We present Turing-style tests to examine whether these synthetic catalogs can successfully imitate observed earthquake behav
Accounting for orphaned aftershocks in the earthquake background rate
Aftershocks often occur within cascades of triggered seismicity in which each generation of aftershocks triggers an additional generation, and so on. The rate of earthquakes in any particular generation follows Omori's law, going approximately as 1/t. This function decays rapidly, but is heavy-tailed, and aftershock sequences may persist for long times at a rate that is difficult to discriminate f
Science and Products
- Science
Could the M7.1 Ridgecrest, CA Earthquake Sequence Trigger a Large Earthquake Nearby?
Release Date: SEPTEMBER 30, 2019 Two of the first questions that come to mind for anyone who just felt an earthquake are, “Will there be another one?” and “Will it be larger?”.The Past Holds the Key to the Future of Aftershock Forecasting
Release Date: MAY 7, 2018 The outcomes of past aftershock sequences can be used to describe the range of possibilities for a current sequence.Operational Earthquake Forecasting – Implementing a Real-Time System for California
It is well know that every earthquake can spawn others (e.g., as aftershocks), and that such triggered events can be large and damaging, as recently demonstrated by L’Aquila, Italy and Christchurch, New Zealand earthquakes. In spite of being an explicit USGS strategic-action priority (http://pubs.usgs.gov/of/2012/1088; page 32), the USGS currently lacks an automated system with which to forecast s... - Publications
Filter Total Items: 18
Aftershocks preferentially occur in previously active areas
The clearest statistical signal in aftershock locations is that most aftershocks occur close to their mainshocks. More precisely, aftershocks are triggered at distances following a power‐law decay in distance (Felzer and Brodsky, 2006). This distance decay kernel is used in epidemic‐type aftershock sequence (ETAS) modeling and is typically assumed to be isotropic, even though individual sequencesProspective and retrospective evaluation of the U.S. Geological Survey public aftershock forecast for the 2019-2021 Southwest Puerto Rico Earthquake and aftershocks
The Mw 6.4 Southwest Puerto Rico Earthquake of 7 January 2020 was accompanied by a robust fore‐ and aftershock sequence. The U.S. Geological Survey (USGS) has issued regular aftershock forecasts for more than a year since the mainshock, available on a public webpage. Forecasts were accompanied by interpretive and informational material, published in English and Spanish. Informational products inclImprovements to the Third Uniform California Earthquake Rupture Forecast ETAS Model (UCERF3‐ETAS)
We describe recent improvements to the Third Uniform California Earthquake Rupture Forecast ETAS Model (UCERF3‐ETAS), which continues to represent our most advanced and complete earthquake forecast in terms of relaxing segmentation assumptions and representing multifault ruptures, elastic‐rebound effects, and spatiotemporal clustering (the latter to represent aftershocks and otherwise triggered evB-positive: A robust estimator of aftershock magnitude distribution in transiently incomplete catalogs
The earthquake magnitude-frequency distribution is characterized by the b-value, which describes the relative frequency of large versus small earthquakes. It has been suggested that changes in b-value after an earthquake can be used to discriminate whether that earthquake is part of a foreshock sequence or a more typical mainshock-aftershock sequence, with a decrease in b-value heralding a largerPotential duration of aftershocks of the 2020 southwestern Puerto Rico earthquake
AbstractAftershocks (earthquakes clustered spatially and chronologically near the occurrence of a causative earthquake) are ongoing in southwestern Puerto Rico after a series of earthquakes, which include a magnitude 6.4 earthquake that occurred near Barrio Indios, Guayanilla, on January 7, 2020, and affected the surrounding area. This report estimates the expected duration of these aftershocks byThe U.S. Geological Survey’s Rapid Seismic Array Deployment for the 2019 Ridgecrest Earthquake Sequence
Rapid seismic deployments following large earthquakes capture ephemeral near‐field recordings of aftershocks and ambient noise that can provide valuable data for seismological studies. The U.S. Geological Survey installed 19 temporary seismic stations following the 4 July 2019 Mw 6.4 and 6 July 2019 (UTC) Mw 7.1 earthquakes near the city of Ridgecrest, California. The stations record the aftershoc#EarthquakeAdvisory: Exploring discourse between government officials, news media and social media during the Bombay Beach 2016 Swarm
Communicating probabilities of natural hazards to varied audiences is a notoriously difficult task. Many of these challenges were encountered during the 2016 Bombay Beach, California, swarm of ~100 2≤M≤4.3 earthquakes, which began on 26 September 2016 and lasted for several days. The swarm’s proximity to the southern end of the San Andreas fault caused concern that a larger earthquake could be triImproving earthquake forecasts during swarms with a duration model
Earthquake swarms present a challenge for operational earthquake forecasting because they are driven primarily by transient external processes, such as fluid flow, the behavior and duration of which are difficult to predict. In this study, we develop a swarm duration model to estimate how long a swarm is likely to last based on actuarial statistics of previous swarms in a given region. We demonstrUpdated California aftershock parameters
Reasenberg and Jones (1989) introduced a statistical model for aftershock rate following a mainshock along with estimates of “generic” California parameter values based on past aftershock sequences. The Reasenberg and Jones (1989) model has been used for decades to issue aftershock forecasts following M≥5 mainshocks in California. Here, we update the “generic” parameters for California through a fTuring-style tests for UCERF3 synthetic catalogs
Epidemic-Type Aftershock Sequence (ETAS) catalogs generated from the 3rd Uniform California Earthquake Rupture Forecast (UCERF3) model are unique in that they are the first to combine a complex, fault-based long-term forecast with short-term earthquake clustering statistics. We present Turing-style tests to examine whether these synthetic catalogs can successfully imitate observed earthquake behavAccounting for orphaned aftershocks in the earthquake background rate
Aftershocks often occur within cascades of triggered seismicity in which each generation of aftershocks triggers an additional generation, and so on. The rate of earthquakes in any particular generation follows Omori's law, going approximately as 1/t. This function decays rapidly, but is heavy-tailed, and aftershock sequences may persist for long times at a rate that is difficult to discriminate f