Skip to main content
U.S. flag

An official website of the United States government


Check out USGS maps from Mississippi, Louisiana, Missouri, Iowa, and Arkansas.

Filter Total Items: 53

Mapping karst groundwater flow paths and delineating recharge areas for Fern Cave, Alabama, through the use of dye tracing

Fern Cave in Jackson County, Alabama, is a 15.6-mile-long (25.1-kilometer) cave system, managed by the U.S. Fish and Wildlife Service and Southeastern Cave Conservancy, that has the second highest biodiversity of any cave in the southeastern United States. Groundwater in karst ecosystems is known to be susceptible to impacts from human-induced land-use activities in watersheds that contribute rech

Estimating streambed hydraulic conductivity for selected streams in the Mississippi Alluvial Plain using continuous resistivity profiling methods—Delta region

Introduction The Mississippi Alluvial Plain is one of the most important agricultural regions in the United States, and crop productivity relies on groundwater irrigation from an aquifer system whose full capacity is unknown. Groundwater withdrawals from the Mississippi River Valley alluvial aquifer have resulted in substantial groundwater-level declines and reductions in base flow in streams with

Use of high-resolution topobathymetry to assess shoreline topography and potential future development of a slack water harbor near Dardanelle, Arkansas, October 2021

The U.S. Army Corps of Engineers (USACE), Southwestern Division, Little Rock District Civil Works program has a mission to maintain cohesion between physical and naturally developed environments. The USACE authorized the development of an off-channel harbor (hereinafter referred to as the “proposed slack water harbor”) along the McClellan-Kerr Arkansas River Navigation System at river mile 202.6,

Potentiometric surface, 2014–15, and water-level differences, 2009 to 2014–15, in the Chicot equivalent aquifer system in southeastern Louisiana

The U.S. Geological Survey constructed the potentiometric surface of the Upland terrace and upper Ponchatoula aquifers and the “400-foot” sand using the altitude of water levels from 121 wells measured January 2014 to March 2015. Differences in water levels in the Upland terrace and upper Ponchatoula aquifers and “400-foot” sand were measured at 55 wells in 2009 and again at the same wells in 2014

Machine-learning predictions of redox conditions in groundwater in the Mississippi River Valley alluvial and Claiborne aquifers, south-central United States

Machine-learning models developed by the U.S. Geological Survey were used to predict iron concentrations and the probability of dissolved oxygen (DO) concentrations exceeding a threshold of 1 milligram per liter (mg/L) in groundwater in aquifers of the Mississippi embayment physiographic region. DO and iron concentrations are driven by and reflect the oxidation-reduction (redox) conditions in grou

Predicted pH of groundwater in the Mississippi River Valley alluvial and Claiborne aquifers, south-central United States

Regional aquifers in the Mississippi embayment are the principal sources of water used for public and domestic supply, irrigation, and industrial uses throughout the region. An understanding of how water quality varies spatially, temporally, and with depth are critical aspects to ensuring long-term sustainable use of these resources. A boosted regression tree (BRT) model was used by the U.S. Geolo

Potentiometric surfaces, 2011–12, and water-level differences between 1995 and 2011–12, in wells of the “200-foot,” “500-foot,” and “700-foot” sands of the Lake Charles area, southwestern Louisiana

Water levels were determined in 90 wells to prepare 2011–12 potentiometric surfaces focusing primarily on the “200-foot,” 500-foot,” and “700-foot” sands of the Lake Charles area, which are part of the Chicot aquifer system underlying Calcasieu and Cameron Parishes of southwestern Louisiana. These three aquifers provided 34 percent of the total water withdrawn and 93 percent of the groundwater wit

Potentiometric surface of groundwater-level altitudes near the planned Highway 270 bypass, east of Hot Springs, Arkansas, July–August 2017

The Ouachita Mountains aquifer system potentiometric-surface map is one component of the Hot Springs Bypass Groundwater Monitoring Project. The potentiometric-surface map provides a baseline assessment of shallow groundwater levels and flow directions before the construction of the Arkansas Department of Transportation planned extension of the Highway 270 bypass, east of Hot Springs, Arkansas. The

Potentiometric surface of the Mississippi River Valley alluvial aquifer, spring 2016

A potentiometric surface map for spring 2016 was created for the Mississippi River Valley alluvial (MRVA) aquifer using selected available groundwater-altitude data from wells and surface-water-altitude data from streamgages. Most of the wells were measured annually or one time after installation, but some wells were measured more than one time or continually; streamgages are typically operated co

Altitude of the potentiometric surface, 2000–15, and historical water-level changes in the Memphis aquifer in the Memphis area, Tennessee

The Memphis and Fort Pillow aquifers are the principal sources of water for municipal, industrial, and commercial uses in the Memphis area. About 207 million gallons per day of groundwater were withdrawn in Shelby County, Tennessee, from both aquifers in 2010 for these uses, with most of the water coming from the Memphis aquifer. The U.S. Geological Survey, in cooperation with the City of Memphis,

Bathymetric contour map, surface area and capacity table, and bathymetric difference map for Clearwater Lake near Piedmont, Missouri, 2017

Clearwater Lake, on the Black River near Piedmont in Reynolds County, Missouri, was constructed in 1948 and is operated by the U.S. Army Corps of Engineers for flood-risk reduction, recreation, and fish and wildlife habitat. The lake area is about 1,800 acres with about 34 miles of shoreline at the conservation pool elevation of 498 feet. Since the completion of the lake in 1948, sedimentation lik

Land area change in coastal Louisiana (1932 to 2016)

Coastal Louisiana wetlands are one of the most critically threatened environments in the United States. These wetlands are in peril because Louisiana currently experiences greater coastal wetland loss than all other States in the contiguous United States combined. The analyses of landscape change presented here have utilized historical surveys, aerial, and satellite data to quantify landscape chan