Skip to main content
U.S. flag

An official website of the United States government

Images

Kīlauea images of eruptive activity, field work, and more.

Filter Total Items: 2957
Map of lava lake depth
December 21, 2020—Kīlauea summit eruption lava lake depth map
December 21, 2020—Kīlauea summit eruption lava lake depth map
December 21, 2020—Kīlauea summit eruption lava lake depth map

Aerial visual imagery collected during an overflight of Kīlauea Volcano's summit just after 11 a.m. HST on December 21, 2020, was used to create a preliminary topographic model. When compared to pre-eruption topographic models, it shows that the bottom of Halema'uma'u crater has been filled by over 100 m (yd) of lava. Map by B. Carr.

Aerial visual imagery collected during an overflight of Kīlauea Volcano's summit just after 11 a.m. HST on December 21, 2020, was used to create a preliminary topographic model. When compared to pre-eruption topographic models, it shows that the bottom of Halema'uma'u crater has been filled by over 100 m (yd) of lava. Map by B. Carr.

Close-up of tephra sample from Kilauea eruption 12/21/20
Close-up of tephra sample from Kilauea eruption 12/21/20
Close-up of tephra sample from Kilauea eruption 12/21/20
Close-up of tephra sample from Kilauea eruption 12/21/20

A close-up photo of a tephra sample taken from one of the sample collection buckets. These small fragments of volcanic glass include Pele’s Hair and Pele’s tears—formed during lava fountaining—which are light weight and can be wafted downwind with the plume. 

A close-up photo of a tephra sample taken from one of the sample collection buckets. These small fragments of volcanic glass include Pele’s Hair and Pele’s tears—formed during lava fountaining—which are light weight and can be wafted downwind with the plume. 

Aerial view of the Kīlauea summit eruption showing active fissures and flowing lava.
Aerial view of the Kīlauea summit eruption
Aerial view of the Kīlauea summit eruption
Aerial view of the Kīlauea summit eruption

Aerial view of the Kīlauea summit eruption from a Hawaiian Volcano Observatory overflight at approximately 11:20 a.m. HST. The two active fissure locations continue to feed lava into the growing lava lake in Halema‘uma‘u crater, with the northern fissure (pictured right) remaining dominant.

Aerial view of the Kīlauea summit eruption from a Hawaiian Volcano Observatory overflight at approximately 11:20 a.m. HST. The two active fissure locations continue to feed lava into the growing lava lake in Halema‘uma‘u crater, with the northern fissure (pictured right) remaining dominant.

Color photograph of lava lake
KW webcam image taken on December 21, 2020, just after 6:30 a.m. HST.
KW webcam image taken on December 21, 2020, just after 6:30 a.m. HST.
KW webcam image taken on December 21, 2020, just after 6:30 a.m. HST.

Kīlauea summit KW webam image taken on December 21, 2020, just after 6:30 a.m. HST. The water lake, present until the evening of December 20, 2020, has been replaced by a lava lake; fissures in the wall of Halemaʻumaʻu feed a lava lake that continues to fill the crater.

Kīlauea summit KW webam image taken on December 21, 2020, just after 6:30 a.m. HST. The water lake, present until the evening of December 20, 2020, has been replaced by a lava lake; fissures in the wall of Halemaʻumaʻu feed a lava lake that continues to fill the crater.

Thick gas plume and fresh tire tracks in Kilauea tephra 12/21/20
Thick gas plume and fresh tire tracks in Kilauea tephra 12/21/20
Thick gas plume and fresh tire tracks in Kilauea tephra 12/21/20
Thick gas plume and fresh tire tracks in Kilauea tephra 12/21/20

Hawaiian Volcano Observatory field crews captured this photo of the thick gas plume, produced by the Kīlauea summit eruption, obscuring the intensity of the sun.

Color thermal map of volcano summit and lava lake
Kīlauea summit thermal map - Dec 21, 2020) at approximately ~11:30 AM
Kīlauea summit thermal map - Dec 21, 2020) at approximately ~11:30 AM
Kīlauea summit thermal map - Dec 21, 2020) at approximately ~11:30 AM

A helicopter overflight today (Dec 21, 2020) at approximately ~11:30 AM HST allowed for aerial visual and thermal imagery to be collected of the new eruption within Halema'uma'ucrater at the summit of Kīlauea Volcano. This preliminary thermal map shows that the new lava lake is 580 m (yd) E-W axis and 320 m (yd) in N-S axis.

A helicopter overflight today (Dec 21, 2020) at approximately ~11:30 AM HST allowed for aerial visual and thermal imagery to be collected of the new eruption within Halema'uma'ucrater at the summit of Kīlauea Volcano. This preliminary thermal map shows that the new lava lake is 580 m (yd) E-W axis and 320 m (yd) in N-S axis.

Color images and graphics of volcanic plume
2D and 3D radar visualization of December 20, 2020, Kīlauea plume
2D and 3D radar visualization of December 20, 2020, Kīlauea plume
2D and 3D radar visualization of December 20, 2020, Kīlauea plume

Example of 2D and 3D radar visualization of the December 20, 2020, Kīlauea volcanic plume. Displayed in photo (top, USGS photo), 2D radar scan from station PHWA (middle, NOAA Weather and Climate Toolkit), and 3D radar visualization (bottom, Google Earth).

Example of 2D and 3D radar visualization of the December 20, 2020, Kīlauea volcanic plume. Displayed in photo (top, USGS photo), 2D radar scan from station PHWA (middle, NOAA Weather and Climate Toolkit), and 3D radar visualization (bottom, Google Earth).

Color photo of water lake
KW webcam image taken on December 20, 2020, just before 6 p.m. HST.
KW webcam image taken on December 20, 2020, just before 6 p.m. HST.
KW webcam image taken on December 20, 2020, just before 6 p.m. HST.

Kīlauea summit KW webcam image taken on December 20, 2020, just before 6 p.m. HST. Three and a half hours later, at 9:30 p.m., an eruption began in the walls of Halemaʻumaʻu crater, vaporizing the lake.

Kīlauea summit KW webcam image taken on December 20, 2020, just before 6 p.m. HST. Three and a half hours later, at 9:30 p.m., an eruption began in the walls of Halemaʻumaʻu crater, vaporizing the lake.

Color map of fissure locations
An eruption commenced at the summit of Kīlauea Volcano
An eruption commenced at the summit of Kīlauea Volcano
An eruption commenced at the summit of Kīlauea Volcano

Shortly after approximately 9:30 p.m. HST, an eruption commenced at the summit of Kīlauea Volcano. Red spots are the approximate locations of fissure vents feeding lava flowing into the bottom of Halema‘uma‘u crater. The water lake at the base of Halema‘uma‘u crater has been replaced with a growing lava lake.

Shortly after approximately 9:30 p.m. HST, an eruption commenced at the summit of Kīlauea Volcano. Red spots are the approximate locations of fissure vents feeding lava flowing into the bottom of Halema‘uma‘u crater. The water lake at the base of Halema‘uma‘u crater has been replaced with a growing lava lake.

Color images of volcanic plume
December 20, 2020, Kīlauea volcanic plume
December 20, 2020, Kīlauea volcanic plume
December 20, 2020, Kīlauea volcanic plume

December 20, 2020, Kīlauea volcanic plume shown from the Gemini Observatory on Mauna Kea (left) and a 3D radar visualization from the same perspective. The radar reflectivity isosurfaces reveal the plume’s internal and external structure.

December 20, 2020, Kīlauea volcanic plume shown from the Gemini Observatory on Mauna Kea (left) and a 3D radar visualization from the same perspective. The radar reflectivity isosurfaces reveal the plume’s internal and external structure.

Color photograph of volcanic crater lake
KWcam webcam image from December 2 at 6:00 p.m. HST
KWcam webcam image from December 2 at 6:00 p.m. HST
KWcam webcam image from December 2 at 6:00 p.m. HST

KWcam webcam image from December 2 at 6:00 p.m. HST, immediately following a M3.1 earthquake at Kīlauea summit. Several rockfalls down the talus slope impacted the summit water lake, causing some brief localized color changes of the lake surface (circled in yellow).

KWcam webcam image from December 2 at 6:00 p.m. HST, immediately following a M3.1 earthquake at Kīlauea summit. Several rockfalls down the talus slope impacted the summit water lake, causing some brief localized color changes of the lake surface (circled in yellow).

Animated GIF showing rockfall into crater lake
KWcam webcam animated GIF December 2, 2020
KWcam webcam animated GIF December 2, 2020
KWcam webcam animated GIF December 2, 2020

ANIMATED GIF: At Kīlauea summit, the KWcam webcam recorded several small color changes along the lake margin following rockfalls which impacted the lake surface. These rockfalls immediately followed a M3.1 earthquake Wednesday evening, December 2, at 5:59 p.m. HST. This animated image file (GIF) continuously loops two consecutive webcam images from 5:50 p.m.

ANIMATED GIF: At Kīlauea summit, the KWcam webcam recorded several small color changes along the lake margin following rockfalls which impacted the lake surface. These rockfalls immediately followed a M3.1 earthquake Wednesday evening, December 2, at 5:59 p.m. HST. This animated image file (GIF) continuously loops two consecutive webcam images from 5:50 p.m.

Color photograph of tephra
Tephra layers preserved at the summit of Kīlauea
Tephra layers preserved at the summit of Kīlauea
Tephra layers preserved at the summit of Kīlauea

Tephra layers preserved at the summit of Kīlauea from at least three different eruptions. Deposits below the top of the scale are predominantly juvenile and deposits above it containing many lithics. Notice the larger size of the yellow pumice clasts compared to the much denser and finer grey lapilli and ash surrounding them from 7 to 18 on the scale.

Tephra layers preserved at the summit of Kīlauea from at least three different eruptions. Deposits below the top of the scale are predominantly juvenile and deposits above it containing many lithics. Notice the larger size of the yellow pumice clasts compared to the much denser and finer grey lapilli and ash surrounding them from 7 to 18 on the scale.

Color photograph of volcanic crater lake
Lake at Kīlauea's summit
Lake at Kīlauea's summit
Lake at Kīlauea's summit

Dark brown colors dominated the central and western portions of the lake at Kīlauea's summit. The greenish hues were present in areas that appear to be zone of hot water influx into the lake. USGS photo by M. Patrick.

Dark brown colors dominated the central and western portions of the lake at Kīlauea's summit. The greenish hues were present in areas that appear to be zone of hot water influx into the lake. USGS photo by M. Patrick.

Color photograph of volcanic crater lake
Kīlauea's summit lake between rain showers
Kīlauea's summit lake between rain showers
Kīlauea's summit lake between rain showers

A quick visit to the western caldera rim provided brief views of Kīlauea's summit lake between rain showers. The lake colors were particularly vibrant today, with a deep blue-green color in the western end (bottom of photo), with dark brown near the center. USGS photo by M. Patrick.

A quick visit to the western caldera rim provided brief views of Kīlauea's summit lake between rain showers. The lake colors were particularly vibrant today, with a deep blue-green color in the western end (bottom of photo), with dark brown near the center. USGS photo by M. Patrick.

View looking southwest along the Southwest Rift Zone of Kīlauea Volcano.
Upper Southwest Rift Zone of Kīlauea Volcano—October 22, 2020
Upper Southwest Rift Zone of Kīlauea Volcano—October 22, 2020
Upper Southwest Rift Zone of Kīlauea Volcano—October 22, 2020

View looking southwest along the Southwest Rift Zone of Kīlauea Volcano. The unvegetated nature of the Southwest Rift Zone is on full display with the Keanakākoʻi Tephra in the foreground overlying lava flows from Cone Peak (the cone in the middle ground to the right).

View looking southwest along the Southwest Rift Zone of Kīlauea Volcano. The unvegetated nature of the Southwest Rift Zone is on full display with the Keanakākoʻi Tephra in the foreground overlying lava flows from Cone Peak (the cone in the middle ground to the right).

Color photograph of native sulfur crystals
Crystals of pure native sulfur at sites of degassing called fumaroles
Crystals of pure native sulfur at sites of degassing called fumaroles
Crystals of pure native sulfur at sites of degassing called fumaroles

Different sulfur gases, including sulfur dioxide (SO2) and hydrogen sulfide (H2S), can react with each other to deposit crystals of pure native sulfur at sites of degassing called fumaroles. The crystals picture here formed within a Sulphur Banks area fumarole in Hawai‘i Volcanoes National Park. USGS photo by T. Elias.

Different sulfur gases, including sulfur dioxide (SO2) and hydrogen sulfide (H2S), can react with each other to deposit crystals of pure native sulfur at sites of degassing called fumaroles. The crystals picture here formed within a Sulphur Banks area fumarole in Hawai‘i Volcanoes National Park. USGS photo by T. Elias.

Color photograph of yellow native sulfur crystals
Close-up image of native sulfur crystals
Close-up image of native sulfur crystals
Close-up image of native sulfur crystals

A close-up image of native sulfur crystals that formed within fumaroles at the Sulphur Banks in Hawai‘i Volcanoes National Park. In addition to sulfur species and other gases, volcanoes emit water vapor. Here, some of the vapor has condensed to liquid water and formed droplets visible on the sulfur crystals. USGS photo by P. Nadeau. 

A close-up image of native sulfur crystals that formed within fumaroles at the Sulphur Banks in Hawai‘i Volcanoes National Park. In addition to sulfur species and other gases, volcanoes emit water vapor. Here, some of the vapor has condensed to liquid water and formed droplets visible on the sulfur crystals. USGS photo by P. Nadeau. 

Photograph of tubing inserted into a fumarole
Tubing inserted into a fumarole
Tubing inserted into a fumarole
Tubing inserted into a fumarole

Tubing inserted into a fumarole at the Sulphur Banks in Hawai‘i Volcanoes National Park allows HVO gas scientists to sample gas. The gas travels through the tube into gas sampling bottles for later analyses. USGS photo by M. Warren.

Tubing inserted into a fumarole at the Sulphur Banks in Hawai‘i Volcanoes National Park allows HVO gas scientists to sample gas. The gas travels through the tube into gas sampling bottles for later analyses. USGS photo by M. Warren.

Color photograph of two scientists sampling a volcanic fumarole
HVO gas scientists collected helium samples
HVO gas scientists collected helium samples
HVO gas scientists collected helium samples

As part of routine monitoring efforts, HVO gas scientists collected helium samples from fumaroles in the Sulphur Banks, or Ha‘akulamanu, area of Hawai‘i Volcanoes National Park on September 30, 2020. Helium can pass through the glass of typical gas sampling bottles, so copper tubing is necessary for the specialized sample.

As part of routine monitoring efforts, HVO gas scientists collected helium samples from fumaroles in the Sulphur Banks, or Ha‘akulamanu, area of Hawai‘i Volcanoes National Park on September 30, 2020. Helium can pass through the glass of typical gas sampling bottles, so copper tubing is necessary for the specialized sample.

Color photographs of volcanic crater lake
Kīlauea's summit water lake comparison - September 23, 2020
Kīlauea's summit water lake comparison - September 23, 2020
Kīlauea's summit water lake comparison - September 23, 2020

HVO geologists made observations of Kīlauea's summit water lake from the east rim of Halema‘uma‘u. This view point is on the large downdropped block that subsided during the 2018 collapse events. From this spot, a view of the entire lake is possible, providing a new perspective on the growth of the lake.

HVO geologists made observations of Kīlauea's summit water lake from the east rim of Halema‘uma‘u. This view point is on the large downdropped block that subsided during the 2018 collapse events. From this spot, a view of the entire lake is possible, providing a new perspective on the growth of the lake.

Was this page helpful?