Skip to main content


Filter Total Items: 1975

Open-source resources help navigate new IM regulations

The revision of federal safety regulations for integrity management of gas transmission pipelines to require explicit consideration of seismicity increases the importance for operators to be actively identifying high-consequence areas (HCAs), evaluating seismic-related threats, and choosing a risk model to support risk management decisions. To ensure equal access to information by both operators a

Modeling the occurrence of M ∼ 5 caldera collapse-related earthquakes in Kīlauea volcano, Hawai'i

During the 2018 Kīlauea eruption and caldera collapse, M ∼ 5 caldera collapse earthquakes occurred almost daily from mid-May until the beginning of August. While caldera collapses happen infrequently, the collapse-related seismicity damaged nearby structures, and so these events should be included in a complete seismic hazard assessment. Here, we present an approach to forecast the seismic hazard

Automated detection of clipping in broadband earthquake records

Because the amount of available ground‐motion data has increased over the last decades, the need for automated processing algorithms has also increased. One difficulty with automated processing is to screen clipped records. Clipping occurs when the ground‐motion amplitude exceeds the dynamic range of the linear response of the instrument. Clipped records in which the amplitude exceeds the dynamic

Seismotectonic analysis of the 2019–2020 Puerto Rico sequence: The value of absolute earthquake relocations in improved interpretations of active tectonics

We present a new catalog of calibrated earthquake relocations from the 2019–2020 Puerto Rico earthquake sequence related to the 7 January 2020 MwMw 6.4 earthquake that occurred offshore of southwest Puerto Rico at a depth of 15.9 km. Utilizing these relocated earthquakes and associated moment tensor solutions, we can delineate several distinct fault systems that were activated during the sequence

Earthquake risk of gas pipelines in the conterminous United States and its sources of uncertainty

Relatively little research has been conducted to systematically quantify the nationwide earthquake risk of gas pipelines in the US; simultaneously, national guidance is limited for operators across the country to consistently evaluate the earthquake risk of their assets. Furthermore, many challenges and uncertainties exist in a comprehensive seismic risk assessment of gas pipelines. As a first sta

The impact of 3D finite‐fault information on ground‐motion forecasting for earthquake early warning

We identify aspects of finite‐source parameterization that strongly affect the accuracy of estimated ground motion for earthquake early warning (EEW). EEW systems aim to alert users to impending shaking before it reaches them. The U.S. West Coast EEW system, ShakeAlert, currently uses two algorithms based on seismic data to characterize the earthquake’s location, magnitude, and origin time, treati

Crustal seismic attenuation of the central United States and Intermountain West

Seismic attenuation is generally greater in the western United States (WUS) than the central and eastern United States (CEUS), but the nature of this transition or location of this boundary is poorly constrained. We conduct crustal seismic (Lg) attenuation tomography across a region that stretches from the CEUS across the Rocky Mountains to the Basin and Range using a total of 115,870 amplitude me

Multi-model comparison of computed debris flow runout for the 9 January 2018 Montecito, California post-wildfire event

Hazard assessment for post-wildfire debris flows, which are common in the steep terrain of the western United States, has focused on the susceptibility of upstream basins to generate debris flows. However, reducing public exposure to this hazard also requires an assessment of hazards in downstream areas that might be inundated during debris flow runout. Debris flow runout models are widely availab

Hazard-consistent seismic losses and collapse capacities for light-frame wood buildings in California and Cascadia

We evaluate the seismic performance of modern seismically designed wood light-frame (WLF) buildings, considering regional seismic hazard characteristics that influence ground motion duration and frequency content and, thus, seismic risk. Results show that WLF building response correlates strongly with ground motion spectral shape but weakly with duration. Due to the flatter spectral shape of groun

Local variations in broadband sensor installations: Orientations, sensitivities, and noise levels

As seismologists continue to place more stringent demands on data quality, accurately described metadata are becoming increasingly important. In order to better constrain the orientation and sensitivities of seismometers deployed in U.S. Geological Survey networks, the Albuquerque Seismological Laboratory (ASL) has recently begun identifying true north with a fiber optic gyroscope (FOG) and has de