Skip to main content
U.S. flag

An official website of the United States government


Filter Total Items: 2070

Revising supraglacial rock avalanche magnitudes and frequencies in Glacier Bay National Park, Alaska

The frequency of large supraglacial landslides (rock avalanches) occurring in glacial environments is thought to be increasing due to feedbacks with climate warming and permafrost degradation. However, it is difficult to (i) test this; (ii) establish cause–effect relationships; and (iii) determine associated lag-times, due to both temporal and spatial biases in detection rates. Here we applied the

Damage amplification during repetitive seismic waves in mechanically loaded rocks

Cycles of stress build-up and release are inherent to tectonically active planets. Such stress oscillations impart strain and damage, prompting mechanically loaded rocks and materials to fail. Here, we investigate, under uniaxial conditions, damage accumulation and weakening caused by time-dependent creep (at 60, 65, and 70% of the rocks’ expected failure stress) and repeating stress oscillations

Landslides triggered by the 2002 M 7.9 Denali Fault earthquake, Alaska, USA

The 2002 M 7.9 Denali earthquake in Alaska, USA, was the largest inland earthquake in North America in nearly 150 years. The earthquake involved oblique thrusting but mostly strike-slip motion, and faults ruptured the ground surface over 330 km. Fault rupture occurred in a rugged, mountainous, subarctic environment with extensive permafrost and variable glaciation, geology, and groundwater presenc

Seismic multi-hazard and impact estimation via causal inference from satellite imagery

Rapid post-earthquake reconnaissance is important for emergency responses and rehabilitation by providing accurate and timely information about secondary hazards and impacts, including landslide, liquefaction, and building damage. Despite the extensive collection of geospatial data and satellite images, existing physics-based and data-driven methods suffer from low estimation performance due to th

Defining the Hoek-Brown constant mi for volcanic lithologies

The empirical Hoek-Brown failure criterion is a well-known and commonly used failure criterion for both intact rocks and rock masses, especially in geological engineering. The intact criterion is calculated using experimental triaxial compression test results on intact samples while the rock mass criterion modifies the intact strength using quantified measures of the rock mass quality. The Hoek-Br

Porosity, strength, and alteration – Towards a new volcano stability assessment tool using VNIR-SWIR reflectance spectroscopy

Volcano slope stability analysis is a critical component of volcanic hazard assessments and monitoring. However, traditional methods for assessing rock strength require physical samples of rock which may be difficult to obtain or characterize in bulk. Here, visible to shortwave infrared (350–2500 nm; VNIR–SWIR) reflected light spectroscopy on laboratory-tested rock samples from Ruapehu, Ohakuri, W

Climatic influence on the expression of strike-slip faulting

Earthquakes on strike-slip faults are preserved in the geomorphic record by offset landforms that span a range of displacements, from small offsets created in the most recent earthquake (MRE) to large offsets that record cumulative slip from multiple prior events. An exponential decay in the number of large cumulative offsets has been observed on many faults, and a leading hypothesis is that clima

Rock alteration mapping in and around fossil shallow intrusions at Mt. Ruapehu New Zealand with laboratory and aerial hyperspectral imaging

Diagnostic absorption features in hyperspectral data can be used to identify a specific mineral or mineral associations. However, it is unknown how accurate hyperspectral mapping can be for identifying alteration mineral compositions at the resolution required to describe structures such as fossil intrusions, or whether it can accurately quantify the alteration present. This study compared petrogr

Modeling geomagnetic induction in submarine cables

Submarine cables have become a vital component of modern infrastructure, but past submarine cable natural hazard studies have mostly focused on potential cable damage from landslides and tsunamis. A handful of studies examine the possibility of space weather effects in submarine cables. The main purpose of this study is to develop a computational model, using Python, of geomagnetic induction on su

A global catalog of calibrated earthquake locations

We produced a globally distributed catalog of earthquakes and nuclear explosions with calibrated hypocenters, referred to as the Global Catalog of Calibrated Earthquake Locations (GCCEL). This dataset currently contains 18,782 events in 289 clusters with >3.2 million arrival times observed at 19,258 stations. The term “calibrated” refers to the property that the hypocenters are minimally biased by

Off-fault deformation in regions of complex fault geometries: the 2013, Mw7.7, Baluchistan rupture (Pakistan)

Observations of recent earthquake surface ruptures show that ground deformations include a localized component occurring on faults, and an off-fault component affecting the surrounding medium. This second component is also referred to as off-fault deformation (OFD). The localized component generally occurs on complex networks of faults that connect at depth onto a unique fault plane, whereas OFD c

Postfire debris flow hazards—Tips to keep you safe

Often referred to as “mudflows,” debris flows are a type of landslide made up of a rapidly moving mixture of dirt, rocks, trees, and water (and sometimes ash) that start on a hillside and travel downvalley. They can easily overflow channels and severely damage houses, vehicles, or other structures. Areas burned by wildfires are especially susceptible to these hazards, which can be triggered by sto