A Shallow to Deep View Inside the Hydrothermally Altered and Mineralized Silverton Caldera Complex: New Geologic Insights Gained From Modern Geophysical Interpretations
The Silverton caldera complex in southwest Colorado hosts base and precious metals that have been mined since the late 1800s. Extensive mine workings, excellent bedrock exposures, and deeply incised drainages make this area a natural laboratory ideally suited for furthering our understanding of the mineral systems in a volcanic environment. In addition, state-of-the-art geophysical data processing, combined with physical property measurements, allows us to model subsurface changes in magnetization and electrical resistivity, thereby providing a three dimensional model of the mineralization and alteration within Silverton caldera complex. The 3D geologic framework will provide insight into mineral system formation and associated environmental issues.
Science Issue and Relevance
The Paleogene Silverton and San Juan caldera complex in the western San Juan Mountains near Silverton, Colorado provides an opportunity to investigate the shallow to deep geophysical expressions of a highly altered and mineralized epithermal system that formed after caldera formation. The area was the focus of numerous benchmark USGS studies on the processes related to caldera formation, mineralization, and the environmental effects of legacy mining, such as the 2015 release of toxic mine waters
from the Gold King mine. However, little information exists about the hydraulic conductivity through the colluvium, glacial moraine, and bedrock in the study area. This project is leveraging new and existing geophysical data to better understand the subsurface heterogeneities attributed to the origin and flow of acidic, metal-rich fluids. The results should provide a better understanding of shallow processes important for groundwater quality issues. In addition, the project hopes to better understand the "roots" of structures at depth that may have been conduits for hydrothermal fluids and whether they are groundwater flowpaths today or serve as aquitards. Thus, the resulting 3D models will provide insight into the porphyry epithermal system and associated environmental issues.
Methods to Address Issue
To better understand the 3D geologic framework of the Silverton-San Juan caldera complex, the Project intends to:
- construct 3D models of geology and hydrothermal alteration based on existing maps and processed remote sensing data,
- collect physical property measurements (magnetic susceptibility and electrical conductivity) on lithologies that have been hydrothermally altered,
- use state-of-the-art geophysical data processing techniques, combined with physical property measurements, to develop subsurface models showing changes in magnetization and electrical conductivity,
- collect and process magnetotelluric data to image deep structures within the caldera complex, and
- integrate the modelling results into an interpreted geologic model of the caldera complex.
Below are data releases associated with this project.
Magnetic susceptibility measurements on hydrothermally altered rocks in the Silverton caldera, southwest Colorado
Magnetotelluric sounding data in the Silverton Caldera complex, Colorado, 2018
Audiomagnetotelluric sounding data in the Silverton Caldera complex, Colorado, 2019
Hydrologic reconnaissance to identify areas of emergent groundwater, Mineral Creek, near Silverton, Colorado, June 2020
Airborne electromagnetic and magnetic survey data of the San Juan-Silverton Caldera complex, Silverton, Colorado, 2019
Audiomagnetotelluric sounding data in the Silverton Caldera complex, Colorado, 2018
High resolution helicopter-borne magnetic and electromagnetic survey Eureka Graben area, Colorado September 1999
Below are publications associated with this project.
Geophysical data provide three dimensional insights into porphyry copper systems in the Silverton caldera, Colorado, USA
Geological and geophysical data for a three-dimensional view—Inside the San Juan and Silverton Calderas, Southern Rocky Mountains Volcanic Field, Silverton, Colorado
Data visualization
Arrastra Gulch, Silverton, CO 3D Data Viewer
Airborne electromagnetic and magnetotelluric geophysical surveys were conducted from 2018 to 2019 in Arrastra Gulch along the southern margins of the San Juan and Silverton calderas. This scene provides 3-D data integration combining electromagnetic data, geologic and historical mine mapping, and high-resolution drone imagery.
Below are news stories associated with this project.
Below are partners associated with this project.
The Silverton caldera complex in southwest Colorado hosts base and precious metals that have been mined since the late 1800s. Extensive mine workings, excellent bedrock exposures, and deeply incised drainages make this area a natural laboratory ideally suited for furthering our understanding of the mineral systems in a volcanic environment. In addition, state-of-the-art geophysical data processing, combined with physical property measurements, allows us to model subsurface changes in magnetization and electrical resistivity, thereby providing a three dimensional model of the mineralization and alteration within Silverton caldera complex. The 3D geologic framework will provide insight into mineral system formation and associated environmental issues.
Science Issue and Relevance
The Paleogene Silverton and San Juan caldera complex in the western San Juan Mountains near Silverton, Colorado provides an opportunity to investigate the shallow to deep geophysical expressions of a highly altered and mineralized epithermal system that formed after caldera formation. The area was the focus of numerous benchmark USGS studies on the processes related to caldera formation, mineralization, and the environmental effects of legacy mining, such as the 2015 release of toxic mine waters
from the Gold King mine. However, little information exists about the hydraulic conductivity through the colluvium, glacial moraine, and bedrock in the study area. This project is leveraging new and existing geophysical data to better understand the subsurface heterogeneities attributed to the origin and flow of acidic, metal-rich fluids. The results should provide a better understanding of shallow processes important for groundwater quality issues. In addition, the project hopes to better understand the "roots" of structures at depth that may have been conduits for hydrothermal fluids and whether they are groundwater flowpaths today or serve as aquitards. Thus, the resulting 3D models will provide insight into the porphyry epithermal system and associated environmental issues.
Methods to Address Issue
To better understand the 3D geologic framework of the Silverton-San Juan caldera complex, the Project intends to:
- construct 3D models of geology and hydrothermal alteration based on existing maps and processed remote sensing data,
- collect physical property measurements (magnetic susceptibility and electrical conductivity) on lithologies that have been hydrothermally altered,
- use state-of-the-art geophysical data processing techniques, combined with physical property measurements, to develop subsurface models showing changes in magnetization and electrical conductivity,
- collect and process magnetotelluric data to image deep structures within the caldera complex, and
- integrate the modelling results into an interpreted geologic model of the caldera complex.
Below are data releases associated with this project.
Magnetic susceptibility measurements on hydrothermally altered rocks in the Silverton caldera, southwest Colorado
Magnetotelluric sounding data in the Silverton Caldera complex, Colorado, 2018
Audiomagnetotelluric sounding data in the Silverton Caldera complex, Colorado, 2019
Hydrologic reconnaissance to identify areas of emergent groundwater, Mineral Creek, near Silverton, Colorado, June 2020
Airborne electromagnetic and magnetic survey data of the San Juan-Silverton Caldera complex, Silverton, Colorado, 2019
Audiomagnetotelluric sounding data in the Silverton Caldera complex, Colorado, 2018
High resolution helicopter-borne magnetic and electromagnetic survey Eureka Graben area, Colorado September 1999
Below are publications associated with this project.
Geophysical data provide three dimensional insights into porphyry copper systems in the Silverton caldera, Colorado, USA
Geological and geophysical data for a three-dimensional view—Inside the San Juan and Silverton Calderas, Southern Rocky Mountains Volcanic Field, Silverton, Colorado
Data visualization
Arrastra Gulch, Silverton, CO 3D Data Viewer
Airborne electromagnetic and magnetotelluric geophysical surveys were conducted from 2018 to 2019 in Arrastra Gulch along the southern margins of the San Juan and Silverton calderas. This scene provides 3-D data integration combining electromagnetic data, geologic and historical mine mapping, and high-resolution drone imagery.
Below are news stories associated with this project.
Below are partners associated with this project.