Pacific Coastal and Marine Science Center

Sea-Level Rise

Filter Total Items: 18
Date published: September 30, 2021
Status: Active

Using Video Imagery to Study Wave Dynamics: Unalakleet

USGS scientists installed two video cameras atop a windmill tower in Unalakleet, Alaska, pointing westward over Norton Sound, to observe and quantify coastal processes such as wave run-up, development of rip channels, bluff erosion, and movement of sandbars and ice floes.

Date published: September 15, 2021
Status: Active

PS-CoSMoS: Puget Sound Coastal Storm Modeling System

The CoSMoS model is currently available for most of the California coast and is now being expanded to support the 4.5 million coastal residents of the Puget Sound region, with emphasis on the communities bordering the sound.

Date published: September 1, 2021
Status: Active

Coastal Climate Impacts

The impacts of climate change and sea-level rise around the Pacific and Arctic Oceans can vary tremendously. Thus far the vast majority of national and international impact assessments and models of coastal climate change have focused on low-relief coastlines that are not near seismically active zones. Furthermore, the degree to which extreme waves and wind will add further stress to coastal...

Date published: September 1, 2021
Status: Active

Coastal Storm Modeling System (CoSMoS)

The Coastal Storm Modeling System (CoSMoS) makes detailed predictions of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales. CoSMoS was developed for hindcast studies, operational applications and future climate scenarios to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety...

Date published: July 30, 2021
Status: Active

Dynamic coastlines along the western U.S.

The west coast of the United States is extremely complex and changeable because of tectonic activity, mountain building, and land subsidence. These active environments pose a major challenge for accurately assessing climate change impacts, since models were historically developed for more passive sandy coasts.

Date published: June 25, 2021
Status: Active

Reef Hydrodynamics and Sediment Processes

The overall objective of this research effort is to better understand how circulation and sediment processes impact coral reefs and their adjacent coastlines.

Date published: May 25, 2021
Status: Active

Climate impacts on Monterey Bay area beaches

For beach towns around Monterey Bay, preserving the beaches by mitigating coastal erosion is vital. Surveys conducted now and regularly in the future will help scientists understand the short- and long-term impacts of climate change, El Niño years, and sea-level rise on a populated and vulnerable coastline.

Date published: December 16, 2020
Status: Active

Estuaries and large river deltas in the Pacific Northwest

Essential habitat for wild salmon and other wildlife borders river deltas and estuaries in the Pacific Northwest. These estuaries also support industry, agriculture, and a large human population that’s expected to double by the year 2060, but each could suffer from more severe river floods, higher sea level, and storm surges caused by climate change.

Date published: November 5, 2020
Status: Active

Core X-Ray: 3-D CT Core Imaging Laboratory

The Geotek RXCT, a "rotating x-ray computed tomography" system, creates ultra high-resolution imagery of sediment cores. The system resides at the USGS Pacific Coastal and Marine Science Center in Santa Cruz, California. It requires the operator to take specialized training and hold X-ray radiation and safety certifications.

Date published: October 22, 2020
Status: Completed

The Impact of Sea-Level Rise and Climate Change on Pacific Ocean Atolls

Providing basic understanding and specific information on storm-wave inundation of atoll islands that house Department of Defense installations, and assessing the resulting impact of sea-level rise and storm-wave inundation on infrastructure and freshwater availability under a variety of sea-level rise and climatic scenarios.

Contacts: Curt Storlazzi, PhD, Li Erikson, Stephen B Gingerich, Clifford I Voss, Ph.D., Peter Swarzenski, Ap van Dongeren, Gregory PIniak, Donald Field, Annamalai Hariharasubramanian, Kevin Hamilton, Yuqing Wang, Edwin Elias
Date published: August 18, 2020
Status: Active

CoSMoS-Groundwater

The USGS Coastal Storm Modeling System (CoSMoS) team has extensively studied overland flooding and coastal change due to rising seas and storms. Interactions with coastal stakeholders have elucidated another important question; will rising seas also intrude into coastal aquifers and raise groundwater...

Contacts: Patrick Barnard