Skip to main content
U.S. flag

An official website of the United States government

Big Sur Landslides

The dynamic coastal landscape of California’s Big Sur, about 140 mi south of San Francisco, is a setting where science disciplines in tectonics, landslides, coastal change, ecosystems, wildfire, and hydrology come together. USGS brings expertise from multiple Programs at the USGS to improve understanding as we fulfill the mission for reducing risk from natural hazards for the Natio

News

link

Photo Roundup - December 2020-March 2021

link

The Monitor newsletter - Vol. 2 | Issue Spring 2021

link

Bringing USGS Science Expertise Together for Natural Hazards in Big Sur, CA

Publications

Controls on sediment distribution in the coastal zone of the central California transform continental margin, USA

We use >10,000 km of high-resolution seismic-reflection data together with multibeam bathymetry to document complex and highly variable post-Last Glacial Maximum (LGM) sediment distribution and thickness in the coastal zone (~10 m isobath to 5.6 km offshore) along a ~800 km section of central California's transform continental margin. Sediment thickness ranges from 0 (seafloor bedrock) to 64 m wit

Offshore shallow structure and sediment distribution, Point Sur to Point Arguello, central California

This publication consists of three map sheets that display shallow geologic structure, along with sediment distribution and thickness, for an about 225-km-long offshore section of the central California coast between Point Sur and Point Arguello. Each map sheet includes three maps, at scales of either 1:150,000 or 1:200,000, as well as a set of figures that contain representative high-resolution s

Characterizing the catastrophic 2017 Mud Creek Landslide, California, using repeat Structure-from-Motion (SfM) photogrammetry

Along the rugged coast of Big Sur, California, the Mud Creek landslide failed catastrophically on May 20, 2017 and destroyed over 400 m of scenic California State Highway 1. We collected structure-from-motion (SfM) photogrammetry data using airborne platforms that, when combined with existing airborne lidar data, revealed that the area exhibited significant topographic change and displacement befo

Science

U.S. West Coast and Alaska Marine Geohazards

Marine geohazards are sudden and extreme events beneath the ocean that threaten coastal populations. Such underwater hazards include earthquakes, volcanic eruptions, landslides, and tsunamis. Devastating earthquakes in Japan (2011) and Chile (2010) that spawned pan-oceanic tsunamis sent a sobering reminder that U.S. coastlines are also vulnerable to natural disasters that originate in the ocean...
link

U.S. West Coast and Alaska Marine Geohazards

Marine geohazards are sudden and extreme events beneath the ocean that threaten coastal populations. Such underwater hazards include earthquakes, volcanic eruptions, landslides, and tsunamis. Devastating earthquakes in Japan (2011) and Chile (2010) that spawned pan-oceanic tsunamis sent a sobering reminder that U.S. coastlines are also vulnerable to natural disasters that originate in the ocean...
Learn More

Remote Sensing Coastal Change

We use remote-sensing technologies—such as aerial photography, satellite imagery, structure-from-motion (SfM) photogrammetry, and lidar (laser-based surveying)—to measure coastal change along U.S. shorelines.
link

Remote Sensing Coastal Change

We use remote-sensing technologies—such as aerial photography, satellite imagery, structure-from-motion (SfM) photogrammetry, and lidar (laser-based surveying)—to measure coastal change along U.S. shorelines.
Learn More

Dynamic coastlines along the western U.S.

The west coast of the United States is extremely complex and changeable because of tectonic activity, mountain building, and land subsidence. These active environments pose a major challenge for accurately assessing climate change impacts, since models were historically developed for more passive sandy coasts.
link

Dynamic coastlines along the western U.S.

The west coast of the United States is extremely complex and changeable because of tectonic activity, mountain building, and land subsidence. These active environments pose a major challenge for accurately assessing climate change impacts, since models were historically developed for more passive sandy coasts.
Learn More