COAWST: A Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System

System Components

System Components

To better identify the significant processes affecting our coastlines and how those processes create coastal change we developed a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling System.

System Components

Training Workshops

Training Workshops

COAWST training workshops are held every two years to help advance the user community.

 

Learn more

Forecast

Forecast

COAWST modeling system is used to predict hourly forecasts for each day.

Learn more

Science Center Objects

Understanding the processes responsible for coastal change is important for managing both our natural and economic coastal resources. Storms are one of the primary driving forces causing coastal change from a coupling of wave- and wind-driven flows. To better understand storm impacts and their effects on our coastlines, there is an international need to better predict storm paths and intensities. To fill this gap, the USGS has been leading the development of a Coupled Ocean-Atmosphere-Waves-Sediment Transport (COAWST) Modeling System

COAWST Modeling System graphic

 The COAWST modeling system joins an ocean model, an atmosphere model, a wave model, and a sediment transport model for studies of coastal change. 

COAWST is an open-source tool that combines many sophisticated systems that each provide relative earth-system components necessary to investigate the dynamics of coastal storm impacts. Specifically, the COAWST Modeling System includes an ocean component—Regional Ocean Modeling System (ROMS); atmosphere component—Weather Research and Forecast Model (WRF), hydrology component- WRF_Hydro; wave components—Simulating Waves Nearshore (SWAN), WAVEWATCHIII, and InWave; a sediment component—the USGS Community Sediment Models; and a sea ice model.

We began with a coupled modeling system as described in Warner et al (2008) and have enhanced that system to include concurrent one-way grid refinement in the ocean model, concurrent one-way grid refinement in the wave model, coupling an atmospheric model to include effects of sea surface temperature and waves, exchange of fields on refined grid levels, and interpolation mechanisms to allow the different models to compute on different grids. Full description provided in Warner et al (2010).

The USGS has provided and developed varying aspects of all these individual systems and provided enhanced capabilities to allow these components to feed back to one another. For example, a typical hurricane modeling simulation may include great details for the atmosphere component, but with limited connectivity to the ocean. However, with the COAWST system, these simulations will allow the ocean and waves to dynamically evolve and provide a feedback to the atmosphere simulation. This will modify the storm development and provide a more realistic suite of physical storm processes.