Skip to main content
U.S. flag

An official website of the United States government

Coastal Changes and Impacts

Climate change is a significant factor that affects both the natural and human components of the coastal landscape. Therefore, assessments and monitoring of vulnerable coastal lands are needed in locations where an ever-increasing population lives in communities at risk from sea-level rise, inundation, and storm surge.

 

Download Contour & Preliminary Contour Data

The objective of the U.S. Geological Survey Coastal Changes and Impacts focus area at the Earth Resources Observation and Science Center is to conduct research and applications to assess the interactions between human inhabitants, natural features, and environmental conditions in coastal landscapes. This work focuses on the geographic nature of coastal changes through use of high- resolution, high-accuracy imagery and elevation data that are critical for mapping sea-level rise, flood hazard and inundation, and for characterizing storm surge dynamics.

 

News

link

National Ocean Month

link

Wetland Word: Blue Carbon

link

Wetland Word: Hydrophyte

Publications

Hydrologic connectivity: Quantitative assessments of hydrologic-enforced drainage structures in an elevation model

Elevation data derived from light detection and ranging present challenges for hydrologic modeling as the elevation surface includes bridge decks and elevated road features overlaying culvert drainage structures. In reality, water is carried through these structures; however, in the elevation surface these features impede modeled overland surface flow. Thus, a hydrologically-enforced elevation sur
Authors
Sandra K. Poppenga, Bruce B. Worstell

Topobathymetric elevation model development using a new methodology: Coastal National Elevation Database

During the coming decades, coastlines will respond to widely predicted sea-level rise, storm surge, and coastalinundation flooding from disastrous events. Because physical processes in coastal environments are controlled by the geomorphology of over-the-land topography and underwater bathymetry, many applications of geospatial data in coastal environments require detailed knowledge of the near-sho
Authors
Jeffrey J. Danielson, Sandra K. Poppenga, John Brock, Gayla A. Evans, Dean J. Tyler, Dean B. Gesch, Cindy A. Thatcher, John Barras

Creating a Coastal National Elevation Database (CoNED) for science and conservation applications

The U.S. Geological Survey is creating the Coastal National Elevation Database, an expanding set of topobathymetric elevation models that extend seamlessly across coastal regions of high societal or ecological significance in the United States that are undergoing rapid change or are threatened by inundation hazards. Topobathymetric elevation models are raster datasets useful for inundation predict
Authors
Cindy A. Thatcher, John Brock, Jeffrey J. Danielson, Sandra K. Poppenga, Dean B. Gesch, Monica Palaseanu-Lovejoy, John Barras, Gayla A. Evans, Ann Gibbs

Science

Topographic Change

The USGS has developed a national inventory of significant topographic changes based on seamless multi-temporal elevation data and land cover data. The NED and the Shuttle Radar Topography Mission (SRTM) data form a unique pair of seamless elevation datasets that can be used to detect and analyze 20th century topographic surface changes in the United States.
link

Topographic Change

The USGS has developed a national inventory of significant topographic changes based on seamless multi-temporal elevation data and land cover data. The NED and the Shuttle Radar Topography Mission (SRTM) data form a unique pair of seamless elevation datasets that can be used to detect and analyze 20th century topographic surface changes in the United States.
Learn More

Creating a System-Wide Assessment and Monitoring Program (SWAMP) for Coastal Louisiana

USGS researchers will provide technical guidance to inform the development of monitoring plans for the western coast of Louisiana.
link

Creating a System-Wide Assessment and Monitoring Program (SWAMP) for Coastal Louisiana

USGS researchers will provide technical guidance to inform the development of monitoring plans for the western coast of Louisiana.
Learn More