Coastal National Elevation Database (CoNED) Applications Project

Home

The Coastal National Elevation Database (CoNED) Applications Project develops enhanced topographic (land elevation) and bathymetric (water depth) datasets that serve as valuable resources for coastal hazards research and Earth science applications.

Overview

CoNED Project Viewer

CoNED Project Viewer

                                                                                                              

Launch Viewer

Scientific Research

Scientific Research

                         

Learn More

News

Date published: August 15, 2019

CoNED Measures Elevation, Helps Model Inundation Scenarios at Hawaiian Cultural Site

In the land of Kamehameha, south of Kona on the big island of Hawaii, a sacred landscape called Puʻuhonua O Hōnaunau faces the uncertainty of the rising seas.

The bones of royal chiefs rest there. Stories of how ancient Hawaiian lawbreakers flocked to this place of refuge still resonate throughout the 180-acre national historic park that surrounds Hōnaunau Bay.

Date published: May 31, 2019

Coastal Storm Modeling System Relies on Elevation Data Provided by CoNED, EROS

With sea levels rising and storms increasingly threatening their shorelines and cliffs, officials in Southern California face some difficult decisions.

Date published: November 6, 2018

CoNED Digital Elevation Model Helps Majuro Prepare for Sea Level Rise

University of Hawaii Geology and Geophysics Professor Chip Fletcher spread his maps on the table as land planners from Majuro—a large coral atoll of 64 islands in the Central Pacific’s Republic of the Marshall Islands­—leaned in.

Publications

Publication Thumbnail
Year Published: 2020

Inundation exposure assessment for Majuro Atoll, Republic of the Marshall Islands using a high-accuracy digital elevation model

Majuro Atoll in the central Pacific has high coastal vulnerability due to low-lying islands, rising sea level, high wave events, eroding shorelines, a dense population center, and limited freshwater resources. Land elevation is the primary geophysical variable that determines exposure to inundation in coastal settings. Accordingly, coastal...

Gesch, Dean B.; Palaseanu-Lovejoy, Monica; Danielson, Jeffrey J.; Fletcher, Charles; Kottermair, Maria; Barbee, Matthew; Jalandoni, Andrea

Publication Thumbnail
Year Published: 2018

Coastal National Elevation Database

The Coastal National Elevation Database (CoNED) Applications Project develops enhanced topographic (land elevation) and bathymetric (water depth) datasets that serve as valuable resources for coastal hazards research (Danielson and others, 2016; Thatcher and others, 2016). These datasets are used widely for mapping inundation zones from riverine...

Danielson, Jeffrey J.; Poppenga, Sandra K.; Tyler, Dean J.; Palaseanu-Lovejoy, Monica; Gesch, Dean B.
Danielson, J.J., Poppenga, S.K., Tyler, D.J., Palaseanu-Lovejoy, M., and Gesch, D.B., 2018, Coastal National Elevation Database: U.S. Geological Survey Fact Sheet 2018–3037, 2 p., https://doi.org/10.3133/2018.

Publication Thumbnail
Year Published: 2018

Evaluating the potential for near-shore bathymetry on the Majuro Atoll, Republic of the Marshall Islands, using Landsat 8 and WorldView-3 imagery

Satellite-derived near-shore bathymetry (SDB) is becoming an increasingly important method for assessing vulnerability to climate change and natural hazards in low-lying atolls of the northern tropical Pacific Ocean. Satellite imagery has become a cost-effective means for mapping near-shore bathymetry because ships cannot collect soundings safely...

Poppenga, Sandra K.; Palaseanu-Lovejoy, Monica; Gesch, Dean B.; Danielson, Jeffrey J.; Tyler, Dean J.
Poppenga, S.K., Palaseanu-Lovejoy, M., Gesch, D.B., Danielson, J.J., and Tyler, D.J., 2018, Evaluating the potential for near-shore bathymetry on the Majuro Atoll, Republic of the Marshall Islands, using Landsat 8 and WorldView-3 imagery: U.S. Geological Survey Scientific Investigations Report 2018–5024, 14 p., https://doi.org/10.3133/sir20185024.