Gridded estimates of postfire debris flow frequency and magnitude for southern California
April 5, 2021
This data release contains gridded estimates of postfire debris flow probability and magnitude for six different rainfall and wildfire scenarios in southern California. The scenarios represent the present and possible future precipitation and fire regimes for the region. The results are provided for 1 km2 cells across the study area. The data release accompanies the journal article Kean, J.W. and Staley, D.M. (2021). Forecasting the frequency and magnitude of postfire debris flow across southern California, Earth's Future, 2020EF001735.
Citation Information
Publication Year | 2021 |
---|---|
Title | Gridded estimates of postfire debris flow frequency and magnitude for southern California |
DOI | 10.5066/P91GIT04 |
Authors | Dennis M Staley |
Product Type | Data Release |
Record Source | USGS Asset Identifier Service (AIS) |
USGS Organization | Landslide Hazards Programs |
Rights | This work is marked with CC0 1.0 Universal |
Related
Forecasting the frequency and magnitude of postfire debris flows across southern California
Southern California has a long history of damaging debris flows after wildfire. Despite recurrent loss, forecasts of the frequency and magnitude of postfire debris flows are not available for the region like they are for earthquakes. Instead, debris flow hazards are typically assessed in a reactive manner after wildfires. Such assessments are crucial for evaluating debris flow risk by...
Authors
Jason W. Kean, Dennis M. Staley
Related
Forecasting the frequency and magnitude of postfire debris flows across southern California
Southern California has a long history of damaging debris flows after wildfire. Despite recurrent loss, forecasts of the frequency and magnitude of postfire debris flows are not available for the region like they are for earthquakes. Instead, debris flow hazards are typically assessed in a reactive manner after wildfires. Such assessments are crucial for evaluating debris flow risk by...
Authors
Jason W. Kean, Dennis M. Staley