Maps of elevation trend and detrended elevation for the Great Basin, USA
September 29, 2023
Topography provides information about the structural controls of the Great Basin and therefore information that may be used to identify favorable structural settings for geothermal systems. Specifically, local relative topography gives information about locations of faults and fault intersections relative to mountains, valleys, or at the transitions between. As part of U.S. Geological Survey efforts to engineer features that are useful for predicting geothermal resources, we construct a detrended elevation map that emphasizes local relative topography and highlights features that geologists use for identifying geothermal systems (i.e., providing machine learning algorithms with features that may improve predictive skill by emphasizing the information used by geologists). Herein, we provide the trend and local relative elevation maps documented in DeAngelo and others (2023), describing the process of removal of the regional trend and the resulting detrended elevation maps that emphasize basin-and-range scale structural features.
Regional elevation trends were estimated using a local linear regression and subtracted from a 30-m digital elevation model (DEM) of topography to create the detrended elevation (i.e., local relative topography) map; therefore one could add the detrended surface to the corresponding trend surface to construct the original DEM. In an effort to optimize the detrended surface, alternate versions were produced with different rates of smoothness resulting in three detrended elevation maps. The resulting detrended elevation maps emphasize geologic structure and relative displacement, and these products may be useful for other geologic research including mineral exploration, hydrologic research, and defining geologic provinces.
References: DeAngelo, J., Burns, E.R., Lindsey, C.R., and Mordensky, S.P., 2023, Detrending Great Basin elevation to identify structural patterns for identifying geothermal favorability, Geothermal Rising Conference Transactions, 47, Reno, Nevada, October 1-5, 2023.
Regional elevation trends were estimated using a local linear regression and subtracted from a 30-m digital elevation model (DEM) of topography to create the detrended elevation (i.e., local relative topography) map; therefore one could add the detrended surface to the corresponding trend surface to construct the original DEM. In an effort to optimize the detrended surface, alternate versions were produced with different rates of smoothness resulting in three detrended elevation maps. The resulting detrended elevation maps emphasize geologic structure and relative displacement, and these products may be useful for other geologic research including mineral exploration, hydrologic research, and defining geologic provinces.
References: DeAngelo, J., Burns, E.R., Lindsey, C.R., and Mordensky, S.P., 2023, Detrending Great Basin elevation to identify structural patterns for identifying geothermal favorability, Geothermal Rising Conference Transactions, 47, Reno, Nevada, October 1-5, 2023.
Citation Information
Publication Year | 2023 |
---|---|
Title | Maps of elevation trend and detrended elevation for the Great Basin, USA |
DOI | 10.5066/P9MQRCBY |
Authors | Jacob DeAngelo, Erick Burns, Stanley P Mordensky, Cary R Lindsey |
Product Type | Data Release |
Record Source | USGS Asset Identifier Service (AIS) |
USGS Organization | Geology, Minerals, Energy, and Geophysics Science Center |
Rights | This work is marked with CC0 1.0 Universal |
Related
Geothermal Resource Investigations Project
Geothermal energy is a significant source of renewable electric power in the western United States and, with advances in exploration and development technologies, a potential source of a large fraction of baseload electric power for the entire country. This project focuses on advancing geothermal research through a better understanding of geothermal resources and the impacts of geothermal...
Jacob DeAngelo
Email
Phone
Erick R Burns
Research Hydrologist
Research Hydrologist
Email
Phone
Stanley P Mordensky
Research Geologist
Research Geologist
Email
Phone
Related
Geothermal Resource Investigations Project
Geothermal energy is a significant source of renewable electric power in the western United States and, with advances in exploration and development technologies, a potential source of a large fraction of baseload electric power for the entire country. This project focuses on advancing geothermal research through a better understanding of geothermal resources and the impacts of geothermal...
Jacob DeAngelo
Email
Phone
Erick R Burns
Research Hydrologist
Research Hydrologist
Email
Phone
Stanley P Mordensky
Research Geologist
Research Geologist
Email
Phone