Long-term database of historical, current, and future land cover for the Delaware River Basin (1680 through 2100)
April 15, 2021
The USGS's FORE-SCE model was used to produce a long-term landscape dataset for the Delaware River Basin (DRB). Using historical landscape reconstruction and scenario-based future projections, the data provided land-use and land-cover (LULC) data for the DRB from year 1680 through 2100, with future projections from 2020-2100 modeled for 7 different socioeconomic-based scenarios, and 3 climate realizations for each socioeconomic scenario (21 scenario combinations in total). The projections are characterized by 1) high spatial resolution (30-meter cells), 2) high thematic resolution (20 land use and land cover classes), 3) broad spatial extent (covering the entirety of the Delaware River basin, corresponding to USGS HUC codes 020401 and 020402), 4) use of real land ownership boundaries to ensure realistic representation of landscape patterns, and 5) representation of both anthropogenic land use and natural vegetation change that respond to projected climate change. Data are provided in 10-year time steps from 1680 through 2100 (43 individual dates). Historical landscape data is provided in one downloadable zip file, containing 34 individual land cover datasets for 10-year intervals from 1680 through 2010. "Current" (2020) and "future" (2030 through 2100) data are provided at 10-year time steps in files corresponding to the 21 different scenario combinations. The following provides a brief summary of the 7 major land-use scenarios. 1) Business-as-usual - Based on an extrapolation of recent land-cover trends as derived from remote-sensing data. Overall trends were provided by 2001 to 2016 change in the National Land Cover Database, while change in crop types were extrapolated from 2008 to 2018 change in the Cropland Data Layer. 2) Billion Ton Update (BTU) scenario (40 dollars farmgate price) - This scenario is based on US Department of Energy biofuel scenarios from the BTU. The 40 dollar scenario represents likely agricultural conditions under an assumed farmgate price of 40 dollars per dry ton of biomass (for the production of biofuel). All three BTU scenarios include the representation of a "perennial grass" class (class 20) that represents grass crops such as miscanthus, switchgrass, or prairie grasses grown for production of cellulosic biofuel. 3) BTU scenario (60 dollars farmgate price) - This scenario is based on US Department of Energy biofuel scenarios from the BTU. The 60 dollars scenario represents likely agricultural conditions under an assumed farmgate price of 60 dollars per dry ton of biomass (for the production of biofuel). 4) BTU scenario (80 dollars farmgate price) - This scenario is based on US Department of Energy biofuel scenarios from the BTU. The 80 dollars scenario represents likely agricultural conditions under an assumed farmgate price of 80 dollars per dry ton of biomass (for the production of biofuel). 5) Global Change Analysis Model (GCAM) Reference scenario - Based on global-scale scenarios from the GCAM model, the "reference" scenario provides a likely landscape under a world without specific carbon or climate mitigation efforts. As such, it's another form of a "business-as-usual" scenario. 6) GCAM 2.6 scenario - Based on global-scale scenarios from the GCAM model, the GCAM 2.6 model represents a very aggressive climate mitigation scenario, where carbon payments and other mitigation efforts result in a net radiative forcing of only approximately 2.6 W/m2 by 2100. 7) GCAM 4.5 scenario - Based on global-scale scenarios from the GCAM model, the GCAM 4.5 model represents a mid-level climate mitigation scenario, where carbon payments and other mitigation efforts result in a net radiative forcing of approximately 4.5 W/m2 by 2100. For each of the 7 land-use scenarios, three alternative climate / vegetation scenarios were modeled, resulting in 21 unique scenario combinations. The alternative vegetation scenarios represent the potential changes in quantity and distribution of the major vegetation classes that were modeled (grassland, shrubland, deciduous forest, mixed forest, and evergreen forest), as a response to potential future climate conditions. The three alternative vegetation scenarios correspond to climate conditions consistent with 1) The Intergovernmental Panel on Climate Change (IPCC's) Representative Concentration Pathway (RCP) 8.5 scenario (a scenario of high climate change), 2) the RCP 4.5 scenario (a mid-level climate change scenario), and 3) a mid-point climate that averages RCP4.5 and RCP8.5 conditions Data are provided here as compressed ZIP files for 1) the historical landscape reconstruction time frame (1680 through 2010), and 2) for each of the 21 future scenario combinations, including the starting 2020 year and extending through 2100 (thus 22 downloadable ZIP files). The "attributes" section of the metadata provides a key for identifying file names associated with each of the scenario combinations and historical period.
Citation Information
Publication Year | 2021 |
---|---|
Title | Long-term database of historical, current, and future land cover for the Delaware River Basin (1680 through 2100) |
DOI | 10.5066/P93J4Z2W |
Authors | Jordan M Dornbierer (CTR), Steve Wika (CTR), Charles J Robison, Gregory S. Rouze, Terry L Sohl |
Product Type | Data Release |
Record Source | USGS Asset Identifier Service (AIS) |
USGS Organization | Earth Resources Observation and Science (EROS) Center |
Rights | This work is marked with CC0 1.0 Universal |
Related
Moving towards EarthMAP: Establishing linkages among USGS land use, water use, runoff, and recharge models
Understanding and anticipating change in dynamic Earth systems is vital for societal adaptation and welfare. USGS possesses the multidisciplinary capabilities to anticipate Earth systems change, yet our work is often bound within a single discipline and/or Mission Area. The proposed work breaks new ground in moving USGS towards an interdisciplinary predictive modeling framework. We are...
Prototyping a methodology for long-term (1680-2100) historical-to-future landscape modeling for the conterminous United States
Land system change has been identified as one of four major Earth system processes where change has passed a destabilizing threshold. A historical record of landscape change is required to understand the impacts change has had on human and natural systems, while scenarios of future landscape change are required to facilitate planning and mitigation efforts. A methodology for modeling...
Authors
Jordan Dornbierer, Steve Wika, Charles Robison, Gregory Rouze, Terry L. Sohl
Gregory Rouze, PhD
Research Physical Scientist
Research Physical Scientist
Email
Terry Sohl
Supervisory Physical Scientist
Supervisory Physical Scientist
Email
Phone
Related
Moving towards EarthMAP: Establishing linkages among USGS land use, water use, runoff, and recharge models
Understanding and anticipating change in dynamic Earth systems is vital for societal adaptation and welfare. USGS possesses the multidisciplinary capabilities to anticipate Earth systems change, yet our work is often bound within a single discipline and/or Mission Area. The proposed work breaks new ground in moving USGS towards an interdisciplinary predictive modeling framework. We are...
Prototyping a methodology for long-term (1680-2100) historical-to-future landscape modeling for the conterminous United States
Land system change has been identified as one of four major Earth system processes where change has passed a destabilizing threshold. A historical record of landscape change is required to understand the impacts change has had on human and natural systems, while scenarios of future landscape change are required to facilitate planning and mitigation efforts. A methodology for modeling...
Authors
Jordan Dornbierer, Steve Wika, Charles Robison, Gregory Rouze, Terry L. Sohl
Gregory Rouze, PhD
Research Physical Scientist
Research Physical Scientist
Email
Terry Sohl
Supervisory Physical Scientist
Supervisory Physical Scientist
Email
Phone